
AD-A2B6 723

COUSE EXERCISES

0005DTI

95-00938
tIIIhI94 2 10 01i1

Best,
Avai~lable

Copy

OVERVIEW OF MEGAPROGRAMMING
COURSE: LECTURES AND EXERCISES

\ccesion For

riýS CRAMI
T TAB /[SPC-93028-CMC 6n8 TuncAd

Justifi, tion .. /

By........... ..

Dirtib!ti I

ailabdity Godes

VERSION 02.00.03 Avoi aid or

FEBRUARY 1994 I

Produced by the
SOFTWARE PRODUCTIVITIY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock HUIl Road

Herndon, Virginia 22070

Copyright © 1993,1994, Software Productivity Consortium Services Corporation, Hemdon, Virginia. Permission to use, copy,
modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 2.52, and
provided that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear
in supporting documentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under
Grant #MDA972-92-1-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity
pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE
PRODUCTIVITY CONSORTIUM, INC AND SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT TIHE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATIER. AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

For

REPORT DOCUMENTATION PAGE -AWd

and 10 *a OMW d MWMtd P.W1310.1 OAd41 D 20M

Overview of Megaprogramming Course: Teacher Notes for Overview
of Megaprogramming Course

s. AunhOR(S S. Wartik
Produced by Software Productivity Consortium under contract
to Virginia Center of Excellence G MDA972-92-J-1018
7 PEI*WOMMOFMAIATMU4AESPSAWAOXES(E5 &. PERFUN3 O(ICA1TM

Virginia Center of Excellence EOTBR

SPC BuldingSPC-94044-CMC,
2214dock VAl 22070 Version 01.00.03

This n suplmet 2207C 1 AD 27669
92. D5T65UG4 IAVALRAe0CJYNAKP1 't I& 10& ONSORM/flK04TOE

Arlington, VA 2220

No Restrictions I abbommi1
13. ABSTRAOT (hMxhnMg 200 Womb)

This is a short course that introduces megaprogramming concepts. Tae Teacher Notes for the
Overview of Megaprogramming Course complement the lecture and exercise material (ADA #
276169). They explain concepts from the lectures in more depth thani is possible in the lectures' slide-
oriented format. They also discuss the relevance of megaprogramming in today's and tomorrow's
industry. They can help teachers understand the importance of the course.

The Teacher Notes are tied closely to the rest of the material. They draw heavily on the examples
from the lectures and laboratory, giving references to specific slides. An appendix relates each slide to
sections in the Teacher Notes. This helps instructors understand the slides as they prepare their
lectures.

14.SLB.ECT7EAWS 15. t4 OFPAGS
Megaprogramming, software reuse, software process, course 60

17. SELiTY CLASSFEcATaIO 11L SECUWI aLASSFEATIIG 119. SECLF4Y CSFICATION 2D. LWATAVN OFABSTRACT
0FEPR IFHSPG OABSTRACT UL

Unclassified Unclassified UnclassifiedI
NSN 7640-01-280-500 %MiWJ F.a 2W6 (Rev. 2-U)

P~m~e by ANSi SK M18I2MI102

CONTENTS

TAB

Unit 1: Software Development 1

Unit 1: Software Development, Workbook 2

Unit 2: Concepts of Megaprogramming 3

Unit 2: Concepts of Megaprogramming, Workbook 4

Unit 3: Application Engineering 5

Unit 3: Application Engineering, Workbook 6

Unit 3: Application Engineering, Laboratory

Unit 3: Application Engineering, Laboratory (Teacher
N otes) ... 8

Unit 4: Domain Engineering 9

Unit 4: Domain Engineering, Workbook 10

Test and Survey 11 a
0

List of Abbreviations and Acronyms............... 12

viiai1 -and/or
)Aot Speelax

Contents

This page intentionally left blank.

E

C

0

E

_E

SJ 0

40 E

0 0

12,f

4mm~~31m >r

0 cc r- G
(I))

~0 *~~ E 0

U) CD I
CY t E 0 0fl o

co 0U~ 0.f 0.

00

E con
0 a0

05 C)
co .0 L

4ý coVE (

c. (D CL0 Er- 0-o
0 O0a

4) 0 .2 76 2o a; =
00 .- -a (1 c 4)o E) U

(U . 0 M. c3 E c

U)~ 0
0 0 3: 4i 0> 4-t C)co 0 0

0~c 0 E)(U.
CF t0) 0 0 (1) E ad cri)

004-) 0.0 CL 0.
a) , 0 0 (* (1) - -oo o0Cr ?%~C)- ~ .CD- Z-la" " 00 C.U .2o(w c-

CUV CL to 23 EE O s

0 *cj Cl EUQ U>. U

0 0. co 0 cY 0
I-~cl a) 0 1- JCD I- -ZI- L 0

a)~

E

@E

C u

E

0g

'CO - 5E Lm ~ (I_0 0 cm0 CL

'20 E 2 0 E2 0 >

o E 'GO)
Co) 0 C. "0-

*0 CU (Dc 0 ~
G- c . M 0 >%

E _ C- U) "'~ 00 %_ u
L > a) E~ ~

c~~~ ~~~ *-v ca "DC)M
3:~ (D0 0 CO ý O

0 0 cr w)Z (
- 0 cw 00 .'w 0 0

cdC 0. >0$ 0C U
Cc$ 0 0 0

cn cis Cl->, . E ~E
0) 0) w Cc$ c-

0 a 0co3. c cm0 00) *gn> c (= O ý-0 i0 k

E E W.CO . 0
M§ C5 0)E= L - 0 ý

Px L_ 0)0) CL a
c*U a) r_ c$ c-

_ Z - .- 0) a - a U
to w~ ý CUf C4- ZC 4 5, E0a),

0 ~ a) 250) - 16 -0 An
CU)O 0 % 0 0C CC 00c Eo

*-m=6 0) Ewo 0 a) as02 E >

EQ wo o L co cc(CY w
COo- C-CO E 0

) :3 co
4-- 0) CL .2ý c E o J)>K--

CO -WO E 0 2 0 r (0)0

co~~~ 0)00
*-D~ ZUC) O) w :3 = 0):cow

-F a: o c% o' cacC0
0 a) 0-C

aE ~ CU~) cmc E
Z Oa ý) .C E40 > 5-U) ~0CD 0

LLcas)0 0Z C 0V0 U) 0--
_)a D ct : a.

a 000 2O15 En -. -r A E) eO ~
(D -.CL~~ C-0 ' 6I - "o O:

0) 0~.. o 0: o V a
a;<~o EOU 0 - l

a)l

2w
o cc
LM a.

CL

a)) CD
"a Com

a) 0U

cc ~ 0oo Q)0> EA

CD E
cc* a

I ~I fE

LO0

0 cc E~
u-J

.j~~~ 00 I- C

n0 0 03 1
0 CL - ~4

4-) 0L W a) : C

E) w- U) - .)

0) a) 0 . _

W- W 0 M=o C)
4) C

0
a) CL Ca 0)

a) ~ ~ (-a0f ~E ~ -

-~ 0 > 0. ~ E CD
wC w"' 0- co ~ .

a) 0 x 0
a- -U

E 0 .0) 0

0 .J~ 0 0
co a) UO~)0 3 C

E c) 0C3

0 U) a- (D V -W
W a) " - U D 0) 4

"" (DC 00 Q 0 a 0 o(a~~0 >% -cc

0 r- -c E
Q) CO E c

a)U 0a-- 02 U 0)
4-- ZC 0 a)

:3a) E) ~ ' E A= W '0
o5 >> ~-C n 0 (a) 0f) :3

CE CL (D c) *) a) r 02
W 0 0 -5 a 0 a)a a

a-0 . a)> a- (D a
o0 0)0 (a))EU a)Wa)

4- w c C 0- 0O
0- >, ~ > a) W) ý

00 a .0 Oa).?f a) C c
-a 0..L- C

C a. w : v C- U - co 0
0 cd C'0 W;.2

- ~ ~ ~ (E *C a)-o 0(~

' 0> Z 00 C0 (DU >0 W) (D W W C
=3~ 00)- M) (D>0

.r- 0 0)c 00)do ~ 0 . c..
cu 0- -a 0~ .-

=o 0 ~ 0 4) .C 4-a) 4-
CD0 Do c4

0 *L , a) ~ *
0 (D(D 0(D 0 -0 a -

~CLw-a L ECA Ic >) %M O(

___ __ __ 0

0 a-

OE 0.2

0)L.

C.)D

0
0

Co >0C
00

0 >-
E UV 0
.2 0 %

e 9
z c0S

02 Ow2ýE 0)
0U)

E
_ U)0 (D -0

V~4 0(4)-U
0h '3) >w 0

Eo L4-) 4)((0

a) C 4)I- U) Is

00E =4) C L .CV 0 I

0~ 0~ w U00
0 E >

E- -V-C
0

UU)

>a) 0) E-~"- CD0

(50 p

*o 0 CD C- 0 E
U m z .- -CU D4 0)

2->.0 cm C6.r CD o3cs a -)' h %(
0 a). ca -) C 0 2)

. ~ ~ ~ ~ I >C 4 V 0-
M

0 (D a) r 0)~ (D) 0 0

C 4)

O () 0 oC (U- s 0

e0 >% ~E-.o~ E~-
> 0') 0 IM wo 00 .m 0

S0) itE V6 0 r- caD "DEC) :
w 0 0 %- C D4v4)

0 >% 2o
U)0 0) - AxVj0VW

.2 (aV C - > Z. -"0
E z5

>) -0 0 . c a O
4-0 c 0 E 0 .0 a a 4

(D 0)0 > % : 3 -w .) o 0
0) Or . V 0 A200. 4 c0.. o h ar :0 40

0 a 4-~0 > c - 0-o 5
E) U) mU

Z o =1 U) 0 0 a- c 0;

Cr M Z V0- 0

C O- > ,0

CO3:~ 0 0 -0-0 UB~ -(()= M 1)t o2I n()>
U)"A C 0

Coo a)a
... IQ.,0 W

o 0
aC;

0 0 CI)E0

a I- t . 0 E,

0- "-5-aI

0

o ., , w

0 0

• . 0E) ll

00-4
00 0

00

0 E

0r 0

0E

CUE E

S-,
•_•1 o

0*

Q- CD 0 4
e) (o' C>C

0 E. 4 CL04V)

Az. c ACO CC w
0 0 0 0 0~C) 4

C: r-CD 1111
4) () E

-0x E 4) -'~ w C! E 0orDa-

CO~~~ 0. (D'Q C -

L- W0 4) 0f C (D

xa) 0 I) O. - C

.r- 00 (a C)
x0 c

a)n e- EV cý C CL

4) to .- -0- 1~U
0 0

'CT (C e. C)
U) .r 4- 4---Q -

0
' D

E .- C
-00 E -Q ý o"- C- ., 0 0

0C C~ 4) s. a .

-CE 0 mc 0 U
4) r- 2 L C L 0) 0. <

-C Cl)DC v 04-6 z w 0)
0~~ w aE >

'ao t al- 2 0 00 c
r_ cis C0 -0 o- --o CU

to 0 2
oe a; c~

0
. CD -

4) 0 cx> CD 0.

m W-0 C UL 0 -
CD~~ ~~ 00 .0 4 0.0 N 0

-0 41.C - - 0 - 0
-00 w w 0

a I
0L.(

0.'

a)0>

0 D

o 40 CEw

0 cc
0 (

0U I-

-O)a) 0) 0
0 x (A 8

2m 0

00 CCl)WSW

co 2- CD 0&. 0
Ca) -C CD -0 0

=L 0
- a a) , (D 'M E-

M 0 0
a) = 4

M~ Cd .ý2 Ejh4

"E 4- *0 - 0E
a4) (h0. MO
-~~~~0 0 - ~ ~ 4 0)C

~ ~ 0 0 0)
4h)- %- 0a O.C ý

EC _ M (ha) c 0 E
0) A~40 .
L a-()LGO 0

W.--

L.00C a)~ va

Cd 0 0 -0 L(0 > 0
0 :3.-) > - -0 C

crU CD a 0 0) -(D)
0. E .L =0 E: 4 04

a) (D ii 4o ý r ~ 0 ai E 0.

0D (D 0) W

6 >- 0a ~ (D C2 0.
M~d -e-. UE >~c 0)~ E* 0)

*j4) w 0) Cc -0 a)a) -

(D 4--0 0..L 0
Ov & Cr- C 4- a

F- E '0 a 2U i 0 .a ' *O.) .

_) .- W X: >, =4

.2 a wd Ao~ 0 0 a O)=
0 a)ý0. L: D E E>o

-6 0w 0 R E0 W C.

- t *aa 0 0000
w 0 0)C 4 E

(I) 0 Oa- p am) 0 C o :8
r) d CU OC 4. .- * 4O)

Ca.
- u.2 0.lo

so0 .0 0 EE c

0 f4r

0s 0 0 4 0

A .~ cc 0 W-~

00 co 0

Es 00 a Es!= c

wo r'c HE E 5--r

0:5
4 0

0 1
00

0. 4) C

0E E E

0. 0
LUCo 00

Xc 0 0 0cUJI

I * ~ Wo t EV "~U G .0 E0o- 'ý s - 6 -

EI mI o >UE

&~ 0 'm >, .o2
Ec c.

0 ~ o Ez 0r.Lt .

E. 0E .2 C cc
C: 0 0 o 0

= .a L:

0. Is) :010
cE I.. m 2. m E- a-

0 0d2 > =4 3o0: !O E
C EC -00 iio W-Ec m 0

0'- Em.. E .4

E ~ ~ ~ ,00 0000 O O
c. im CM0 CL

E a 0 -0 CD 0 0 CL(a

04 ~) 3Lc wd
Cc li E =) . o 0

C -r CL0 0- 00 0)%

0 -60 ýj~ 01 0E~~~ ~ '- C 8...000 0 0 ar) E 0 ý
tE r- 0 -0 r- 0 :)

00 * 1 C (
0~0.2 o-. c.E 0E0 0 o.- >

~2 0.0W)0 05 C-.E : a) -)&. W. 4) 2 00

(Doo o CI 0

E0
4) EwE 0 .1 ;:-ag. 05

000 0L r- 6) 3
o - ý. --r 0.0 04- '
-o 02. '00 -00 m. 0 0E0 Cm)

CD~~~ ~ 0 DýW=4

o ~ ~ ~ 0j I.- 4)0iow. 0 E-

02

E cc toE~ 00.. 0 :. I2 _

c m 00 0.0
00*~lC 0

h..0 I-

0.0

C 0 2 02. e~

0-&I CS

CL

C.2E.2
0.2 0 (9

=A .0.00M

.20* -

.C aC
i c 4)

I-a

Overview of Mepprogramming Course: Unit 1, Software Development, Workbook

UNIT 1: SOFTWARE DEVELOPMENT

SUMMARY

Software development involves more than just writing code.

SoFrwARE LisE CYcIL

"* The customer states the NEED for the software.

"* The developer DEVELOPS the software.

"* The software is USED, debugged, and enhanced.

"• The software becomes obsolete and is RETIRED.

SovrwARE DEVELoPMENT PRocEss

RequirementsSDefine the problem.]

S~Design
Plan how the software will be or~ganized,

[Implement the plan bZ writing the code.

Test

Test the software to make sure it works.

Deliver

Deliver the software to the customer.

Support
Support customer use of the software.

REQumitm s

• Requirements define the problem.

* Since you cannot solve a problem unless you know what the problem is, defining the
requirements is the most important step in software development.

* Wrong or vague requirements cost money.

Overview of Megaprogramming Course: Unit 1, Software Development, Workbook

MEGAPROGRAMMING

"* Megaprogramming is the next generation in software development processes.

"• Megaprogramming looks at similar problems and solutions as opposed to seeing each as
unique.

"* This set of similar problems with their solutions is called a problem area.

"* Megaprogramming takes advantage of the similarities and differences between the problems
when generating a solution to a specific problem.

"* In the following figure, everything above the dotted line defines problems and solutions within
the problem area. The steps below the dotted line are done to creat. a specific solution for
a specific problem within that problem area.

i Understand all aspects of the
This step defines a problem area (a set of similar

problem area. problems with their solutions).

Software and documentation to
help define and solve a problem

in that area

This step defines a problem .1FCreate a solution to a problem
and creates a solution. in the problem area.

Ie ,'on

Your Customer

A good analogy to megaprogramming is the building of computers. Most computer companies build
several types of computers-for example, stationary and laptop. They don't build all the individual
chips and boards differently. They take existing parts and, based on their knowledge of how to build
computers, assemble them in slightly different ways depending on what they want to produce.
Software developers, on the other hand, traditionally generate software from scratch each time.
Megaprogramming is an attempt to allow software developers to do what hardware engineers do: use
existing, proven components each time a product is created.

2

Overview of Megprogramming Course: Unit 1. Software Development. Workbook

UNIT 1: SOFTWARE DEVELOPMENT

EXERCISES

GENERATING REQUIREMENTS

Write down all of the information you think you would need to develop a software program that would
solve the following problems. Don't worry about specific procedures. List only all of the information
you would need to solve the problem.

1. Beach Trip - You and a friend want to drive to the beach for a weekend and you want to know
(1) how long it is going to take and (2) how much the gas is going to cost.

2. Scheduler - You want to develop a program that automatically schedules all of your activities
during the week. You want to be able to run this program every Sunday so you know the time,
date, and location for each activity.

3. The Cleaning Robot - With such busy lives these days, you decide to develop a robot that will
clean up litter in a teenager's room.

4. Several Robots - Suppose you work for United Robot Workers, Inc. (URW). Three
customers approach you. Each has different needs:

a. Customer 1, a farmer, owns a large cornfield and has trouble finding time to harvest
it. She wants to know if you can provide a robot that will harvest her corn without
human supervision.

b. Customer 2 is from the Alaska National Guard, which is constantly rescuing people
who wander too far afield in the tundra. Mounting a rescue party is time consuming;
people have died while the members of the party are gathering. The Guard thinks
having robots ready could eliminate these life-threatening delays.

c. Customer 3, from the National Park Service, is concerned about growing amounts of
litter in national parks and wants to know if you can provide a robot that can pick up
the litter.

These three statements correspond to the customers' vague understandings of their problems
and of potential solutions. Your task is to write a set of questions for each customer that would
clarify each of the problems.

5. Vending machines - The Student Government Association (SGA) has funds to build a
vending machine room near the central hall. The principal has agreed to let the SGA go ahead
if they make provisions to keep it attractive and litter free. It is your job to define the
requirements for the vending machine. What information do you need to define the
requirements?

List the exact requirements for the particular vending machine you were assigned in class. The
requirements you come up with will most likely expand beyond the requirements identified
in the class discussion.

3

Overvim of Megaprograrnuing Coursc: Unit 1, Software Development, Workbook

This page intentionally left blank

4

Overview of Megaprogramming Course: Unit 1, Software Development, Workbook

UNIT 1: SOFTWARE DEVELOPMENT

TEACHER NOTES FOR EXERCISES

Here are lists of needed information for each of the problems. Each list is probably not complete. Again,
the point of the exercise is not to create a comprehensive list but to make the students realize how hard it
is to generate a complete list.

Several 9f these exercises deal with hardware as opposed to software. However, the course lecture material
focuses on software. The point of the exercises for all units is to get across key concepts in software
development and in megaprogramming. We have used examples in these exercises that we feel will get the
concepts across to the students without worrying about whether or not the example was softK,. related.

The first three exercises are optional. The fourth exercise begins the introduction of what the students will
see in the laboratory. The fifth exercise is threaded into the next day and can be used as homework

GENERATING REQUIREMENTS

Write down all of the information you think you would need to develop a software program that would
solve the following problems. Don't worry about specific procedures. List only all of the information
you would need to write t":ý software.

1. Beach Trip - You and a friend want to drive to tht. beach for a weekend and you want to know
(1) how long it is going to take and (2) how much the gas is going to cost.

"* Cost of the gas

"* NMumber of miles to the beach

"* The speed limit

"* How much time it takes to stop forgas

"• How much gas you have in the tank when you start the trip

"* How bigyour gas tank is

"• How many miles pergallon your car takes

You also have to make certain assumptions, such .s the following (others might make different
assumptions, which would change the program and the answer):

"* You always drive at the speed limit.

"• The only timeyou stop is when you stop to get gas.

"* When you stopforgas, you always stop for the same amount of time.

"* There is no traffic.

5

Overview of Megaprogramming Course: Unit 1, Software Development, Workbook

2. Scheduler - You want to develop a program that automatically schedules all of your activities
during the week. You want to bc able to run this program every Sunday so you know the time,
date, and location for each activity.

" A list of all of the activities you are involved in for the week

- Those that areflexible and can beperformed on any day (e.g., working on your term paper)

- Thosethat can onlybeperformedatcertain times (e.g., when the computer lab is available
for use)

"* How long each activity takes

"* Whether there are any activities that need to be performed before other activities can start or
finish (e.g., you have to practice yourpiano before your next piano lesson)

"* What your start time is for the day

"* What your end time is for the day

" If there is a deadline for any of the activities (e.g., yourtermpaperisdue on Thursday, so it is
better not to schedule that work for Friday)

"* How you want your schedule to be presented (e.g., so it looks like a calendar or just a list for

each day followed by the time)

It might be useftl to have a separate text file to hold those activities that occur every week.

3. The Cleaning Robot - With such busy lives these days, you decide to develop a robot thatwill
clean up litter in a teenager's room.

This one is a lot harder because each teenager has a different room layout and different types of
litter

"* How often does the room need to be cleaned? This will have an impact on how much litterthere
is-cleaning once a month means more litter to pick up than cleaning once a week

"* How much litteris in a typicalteenager's room when it is time to do the cleaning? This willaffect
the size of the bag that the robot carries to hold the litter.

"* What distinguishes litter from nonlitter?

"* What types of litter are there? Is the litter usually small (paper, bottles, cans, wrappers) ormight
it be bigger?

"* Should the robot discriminate among articles itpicks up - e.g., clothes on thefloorthat should
go into a laundry basket as opposed to the trash can? Are there other items that should not go
into the trash can? What should the robot do with them?

"• What does a typical teenager's room look like (for example, what kind of furniture is there)?
Do we need to search on top of each piece offumiture for litter or can we look just on the floor?

"* How much time does the teenager expect (or can the teenager afford) each cleaning to take?
This will have a direct impact on how fast the robot must work

6

Overview of Megaprogramming Course: Unit 1. Software Development, Workbook

Specific information you would need forprogramming your robot inchkdes:

"* The amount of energy the robot needs (maybe you'll be strapping batterypacks on).

"* The size of the bag your robot will have for litter

"* Howyou plan to makeyour robot traverse the room. To do this, you will need a map of each
room and a strategy for making sure you cover all parts.

"* How you plan on getting at lundfumiture.

"* Howyou plan on sensing the litter (e.g., a metal detector) and the range at which your robot's
sensors can sense the litter (e.g., within I ft., 3ft., etc.).

4. Several Robots - Suppose you work for United Robot Workers, Inc. (URW). Three
customers approach you. Each has different needs:

a. Customer 1, a farmer, owns a large cornfield and has trouble finding time to harvest
it. She wants to know if you can provide a robot that will harvest her corn without
human supervision.

b. Customer 2 is from the Alaska National Guard, which is constantly rescuing people
who wander too far afield in the tundra. Mounting a rescue party is time consuming;
people have died while the members of the party are gathering. The Guard thinks
having robots ready could eliminate these life-threatening delays.

c. Customer 3, from the National Park Service, is concerned about growing amounts of
litter in national parks and wants to know if you can provide a robot that can pick up
the litter.

These three statements correspond to the customers' vague understandings of their problems
and of potential solutions. Your task is to write a set of questions for each customer to clarify
each problem.

This exercise leads uptothe laboratoryin Unit3. There, you willplaythe role of customer The scope
of the problem area will be restricted considerably more than it is here, making the questions easier
to answer The purpose of this exercise is to get the students thinking about robots. Questions they
might pose include, but are not limited to, the following:

"* How much is the customer willing to spend?

"* For the Alaska National Guard, what should the robot do with thepeople once it finds them ?
Should it pick them up and carry them to safety, or should it carry shelter and supplies with it?
What is an acceptable speed for the robot?

"* How much corn (for the cornfield robot) or litter (for the National Park Service) should the
robot be able to carry?

Remember to make students focus on requirements rather than solutions. They should not ask

questions like, "What type of locomotion mechanism do you want?" or "What is the maximum
speed of the robot?"As employees of URW, they should already know the answerto such questions.

7

Overview of Megaprogramming Course: Unit 1, Software Develokment. Workbook

5. Vending machines - The Student Government Association (SGA) has funds to build a
vending machine room near the central hall.The principal has agreed to let the SGA go ahead
if they make provisions to keep it attractive and litter free. It is your job to define the
requirements for the vending machine. What information do you need to define the
requirements?

The answers to this exercise will follow a different format to support classroom discussion and lay
the foundation for a homework exercise and lead-in to a Unit 2 exercise.

It works well to have individuals or groups put their lists on large sheets ofpaper and tack them to
the wall These lists can then be used in the Unit 2 discussion of similarities and differences.

Class Discussion:

You need to know the following things:

What kinds of items will be sold?

Generate a list of possibilities with the students. The idea here is to have a variety of items.
The list might include soft drinks, hot soups, school supplies, snack crackers, fruit juices, nuts
and candies, sandwiches, etc.

* In whatprice range should the items be?

(There are a lot more requirements. These are just the flrst two that will help determine all of the
other requirementsm)

Generate lists ofpossibilitiesfor each question. Then, imagine several different vending machines,
each fulfilling a different requirements set. Examples:

- A sandwich machine that sells only sandwiches and chips. The sandwiches may be hot or

cold,

- A soda machine that sells by the can or by the cup.

- A snack machine that sells nuts, crackers, candies, etc.

- A hot meal machine that sells soups, Wdinners, etc.

- A supplies machine that sellspencils, pens, paper, scissors, folders, etc,

Each one of these vending machines will have its own unique set of requirements. These
requirements might include a thermometerto monitor temperature, unique display requirements,
varying input support (e.g., bills as well as coins), size of output bin, etc

Come up with exact requirements for the particular vending machine you were assigned in
class. The requirements you come up with will most likely expand beyond the requirements
identified in the class discussion.

Assign each student, or small groups of students, one of the machines discussed in class Their
assignment is to list exact requirementsfortheirparicularvending machine. The requirements they
come up with will most likely expand beyond the requirements identified in the class discussion.

8

.0

.)

0)

C.

cc1

E)
a0
0)

0)
co

0 EA

.000
0 0 4C

0o~ E00n CD a)
EE 0

-0) 0U
Q)(t~o 0) CU 4) a)

0 4)

-0 00-0))
I-0

Z
c-M00 n E -a 6: u) U) E) o -S4-) 0- CD4 tr CL

a w

Z Ii 0

44) E oa
E

ocg

0E

0)
, " C C

0

0 CL

7- 00
0- 0

E 4-0

(U -

E 4)

-CU)

o.00
Co~ 0

E 0

C-.U 0

20 4) 0 .

- L~- 2D " 0.

00 *- 0

o U)~ J5 (D)
A= >

CO 00 2 .
0 0-C

oL 0 U)C E)
M 0 FD 4;ý 0

-O C- 4)

z=ru 0 %I c) a0 CI)0

00- W ~:0 - C 0)

0 0

(I) (U

0.2.;..

* = \-o_==
S*,,

Om 0

W = C4

._.OE =E 60 ,=1 r6

C -0

c .9

a.000E m

00 a)=)
E-mx

c i

cm
0. 1~E

0 0o M.. c± 1) o)c 0o l c
4" 0 -@o wccE cow I--.2

200 070 ~

AýE U)~;: 0 -tr M
E0= -,a "w c

0-= r- -aEo0 0

to to W (a :32 3 0 04

E =0 -= ;roO - 6 * 0.
E. 0 3

o) >0~ ~0 *-, 0 0, 4) 0 :3 -c r . 'O~
, 0)>

ý w' O0 -> 0 w. cu . 'a ' CL
0 ~ ~ ~ - 0V 0E N 75~'~00 0) ~

o 1 o c 0 C .-. =4E

0 0 0
(D- >k0 00

wo 0) 00
w o2.O 0. 5,0 E~,4 EE E t!: 0 -

0 -0 v-
0~ .- '* Eo o0 C 8 L

2Oo E. EOL -6c4- *
SO 00.C 0>Q4-0 (D E

5, 0 c 0
r 0a L 5- %j.~ % EooI 4-a. a 00 0.
0D too CL* Q 0 - > ~ *0o Oo o- OcoW zr_ a~~0~

>000o 0 -'a n.-o 0E

r '. 0 0 C0)0C-
> t 3 om-4 w 0 :5 0cc0- c

qc

C

CL.2

CLC

0 an0

d)E

0-0

10 0

IM 00 000

02
00 0 0

0 II
Oso 000

0u LJ 0 0 .

cmi

o 0 . 00

Ocai 000 ;40 20II0".
00 0~ 02Ea)

) caS4 00SCM 0 IZ O =ID-a

ov0 E~ > Oo, j
0 0 2E Cc %= a)C

3; ~ ~ ~ ~ i Z .*cnC o: 040 ý4

EE
0 - 6' E w 0

caE w.0 w ~ _a

~0 -0 o ~ ~ 0

0. 0~ CD >, 2mESi0S2o
U) .00

0) 0a ~0.) Cd
WE00(D " E

0*

Lc -cm S)
E)C5 0

0 0 C
00 0 0

ETD0 LM E 12 .E
0~ 0)3 1.. 0> 00 0

>0) E . 3-a) -00 ~ a *0CCL

x -- o--,: at0 w a 1) 0 0 E ?,,
M= - (D M-0 .c 0 C) 4

U) C0 i.-' 0~ Caý cnZ0 0 0 C
.... E. 0l3 : 2& 0

-03) ýo " OW)~ ? . 0 (D) . 0) a)
0 rM0 0 L .CE 0 ~ % Z Ca

-CO C0 00 00 0)

~~0 W -C LLCC. ? 0O-

0 4;

.0 .- -

fiL o~ o -
.0 0t .0 0 0 vi

oC (a 0i 0 C4
0 00

-c a~ 0 Es
0 ,

E-O

0 6 0.0 o~

(0 040 E c diEo
4) CL~

&0EX- 0c . .
0) E E0 001 0 I.02 0o L I-

cis c 0 .2.0 c

0 0 (A - (O (m
0 -- 0C . . -

a. 0 0 CA S

0 0
I- E-

00

09 E 0 0- .4

0 00 co -0U Cl EE 0 U) 4

o E. 75 .- Z W

0 0 ca 0) 0

00
E0 U) 3:E co3~ 0

E 0-: G 0o 0).0 0-0
8 0 *0 0 W0 g

0 0 U

2 0C m 00 0)

wo 0
0.~0 * 3.

0) 0 0) 0
E~ wE m -- U)

C 2 0
CD C0 c 0 - 0

E U) 00co

0 a)E 0 0
U) U) . . .-- . C CO :

(a 2L 4 O) 4D 0~
.~~ ~ UU). 0U

a)Ca a)))~ ~
U) -a EO 4.) a) 7~0.

E (- 4- a

0) 3:9 0 0 - U
0D rO 0 r

.- 0.) _ 0- o)
00 E 0T a 0 0 irE~~U C. I-(

-0U) E) c ~ V C L. -

*:) !- 02 0)t
00

U)4d V 2 a' oC 0< .0 co*C) -a4 0 C ~ 0 3
CO U (D CD CL -a

or. 0 a)- (0 00

.r_ 00 (a)~ -C E t
a O -C .2 p.2-

-COD~ 2 4; -5 2 oC

o O U) m> 0 0 ~ 0~ U) a. E t
to (a 00 02 0 MQ 00 § E
>0 0. o- U)U.

OD~ 0 (a)
0) 3:6 w C)U

0S -5~ E z. U)0 4- 0

0 .. ~ ~ ~ ~ W-C 4 -0 r- r8'E0 cD m
0O r- 0 CD (D> C C U t

co 0- -0. 0 (D L- E = 2 C
c0D (42 0-W C VL . o OV -

2o ci (fDU *L c *- U). 4)4 C

0- U) ox - 0) =.C 0 0c

o 0 aw. < 0 0 >O 0 (D

00

0 0

4i5) r J9

iam - .- 0
0 cc-

100%

E aX' a. Cc

Eu 0. &. 0 0

0E
>U

0 00 ?
(A 0U) .

(A >
0m O) CD 0O h cc

0~ CO - 0U E 0.
C. 0 0

0 0

o~E 0or CWO o W C

00~ CL~ 00(

0 0 o

2) 0
c

0
4a

Cc 0

en Cu 0 0
.0 E

'-0 W
E 0 Cu 0

o 00
E 0 Co.'

20 4) 0u C

4) 0 .ES cn

:3 a) o.

C CL

EE.~ b
0 000 c m0 Cu

4. 0 c o c - 'au
000) w C0

0. (au .0 E)

0 CL 0)

C 0 0 m
0) 0 CL. (D 0) (D

cis. *l 'a0 0) 00

0 0)) 0 'a
EC~ 0 0 L

2 00e o r- 0_

ca~~n 0 > L4) .r C

0) 0 C 0 0 a) (D

0 Oa 0) COO m

o oa 0 2 ue
4- 0n "5~o IUD)92 V< cco -

M en E E -CLI
z 0 c t 0 1. 0 00 WV;

0 6) Z > -

sit
cc~

0) 0 w

00

EG to0-*

ccd EE00w0 0

00

Ovemiew of Meaprogramming Course: Unit 2. Concepts of Megapwgranmmin&. Workbook

UNIT 2: CONCEPTS OF MEGAPROGRAMMING

SUMMARY

DowMINs

• Domains contain related problems and solutions that have:

- Similarities among problems

- Solutions with common parts

- Variations among the problems and solutions

Problem Areas

Domain of Robots
Video Games Root 0 Commonalities of the

problems that robots solve

Vending Machines (For example, they all need to
search for something.)

Cash Registers * Commonalities of robot

Televisions solutions

Minivans (For example, they all have a
face-north procedure.)

Commercial Airplanes * Differences among
Individual robot problems

Calculators and among solutions
(For example, some robots
need special search
algorithms to avoid
obstacles.)

0 When defining domains:

- Make sure the problems and solutions have enough in common that it pays -o consider

them together.

- Do not include large numbers of barely-related problems in the same domain.

0 When identifying a problem in the domain, you only need to identify how it differs from other
problems. What is common to all problems defines the other characteristics of the problem.

Ovenview of Megaprogramming Course: Unit 2. Concpts of Mepprolramming. Workbook

When solving a problem in the domain, you can make use of what is common to all solutions.

Domain of Robots

* Commonalities of the
problems that robots solve
(For example, they all need to Write code that solves the
search for something.) common parts of the problem and

I then reuse It in all solutions.
* Commonalitles of robot (For example, the face-north

solutions procedure.)
(For example, they all have a
face-north procedure.)

e Differences among
Individual robot problems Write code that implements the
and among solutions differences among different
(For example, some robots solutions.
need special search
algorithms that will allow them (For example, the search procedure
to avoid obstacles.) that makes sure the robot avoids

obstacles.)

MEGAPROGRAMMING

Megaprogramming has two main tasks:

1. Domain engineering where we:

"* Understand the problems in a domain

"* Determine the best way to create solutions to problems in that domain

"* Create software that is reusable in all solutions in the domain

2. Application engineering, where we:

"* Understand the problem of a particular customer

"* Create a solution to an individual problem of a customer

"* Reuse software we have developed in domain engineering to create our solutions

2

Overview of Meaprorammiing Course: Unit 2, Conoepts of Meapr•orammini. Workbook

UNIT 2: CONCEPTS OF MEGAPROGRAMMING

EXERCISES

Continue with your vending machine problem (Unit 1, Problem 5). On the board, or on large
sheets of paper, list the requirements generated by the students. Ask the following questions:

Similarities:

"* Are there any similarities among the requirements for the different vending
machines?

"* Could a manufacturer design a component for each similarity?

Differences:

"* What requirements are different from vending machine to vending machine?

"* How could the differences be accommodated? Could any of the differences be a
simple modification of an already identified component? Would it be necessary to
build an entirely new component?

Based on these components, what components do you need to come up with for your vending
machine? This could include similar components as well as components that are different
from all other vending machines. You should also identify which components need to interact
with each other, which components you feel are reusable across other vending machines, and
which components are unique to your vending machine.

Each group of students working on a particular vending machine should come up with a list
of components that they need to build that vending machine. Each group should present its
final list of vending machine components to the class. For each vending machine, discuss the
following questions:

"* Have they designed a vending machine?

"* Were they able to identify "reusable" components (i.e., components that could be
used with little or no modification)?

"• What components did they have to create to handle requirements unique to their
vending machine?

"* Would they consider vending machines a class of common problems and solutions (a
domain)?

"* What are some of the benefits of going through these steps?

When you are finished, answer the following questions:

3

Overview of Megaproxparnting Course: Unit 2. Concepts of Mepprogramnmnti. Workbook

"* Could you use megaprogramming concepts to help build vending machines?

"* What would the domain engineer do in this domain?

"• What would an application engineer do in this domain?

Discuss the robot problem from Unit 1, Problem 4.

"• Make a list of common jobs and tasks that the three robots in Unit 1, Problem 4
needed.

"* Make a list of specific jobs and tasks that not all the robots needed.

HOMEWORK

1 Consider the following-are they domains? Why or why not?

"* The process of applying to college

"* The process of proving equations

"* The process of school bus scheduling

"* The process of transportation scheduling

2. Describe a domain in today's world of teenagers. List the similarities and differences in your
domain.

4

Overview of Mepaprogramming Co~ure: Unit 2, Concepts oa Megaprogrammin Workbook

UNIT 2: CONCEPTS OF MEGAPROGRAMMING

TEACHER NOTES FOR EXERCISES

Continue with your vending machine problem (Unit 1, Problem 5). On the board, or on large
sheets of paper, list the requirements generated by the students. Ask the following questions:

Similarities:

" Are there any similarities among the requirements for the different vending
machines?

Examples of similarities might include the need for the following: temperature monitor,
display, input, output, storage modules, etc.

"* Could a manufacturer design a component for each similarity?

This should generate a list such as coin boxes, mechanisms to deliver the merchandise,
display units, utilities units, storage units, housing units.

Differences:

"• What requirements are different from vending machine to vending machine?

Examples of differences might include a microwave to heat an item, a special option that
makes change for bills, etc.

"* How could the differences be accommodated? Could any of the differences be a
simple modification of an already identified component? Would it be necessary to
build an entirely new component?

For example: A microwave to heat an item would probably have to be a new component.
A bill changer couldprobably be a modification of the existing coin/bill input mechanism.

Based on these components, what components do you need to come up with for your vending
machine? This could include similar components as well as components that are different
from all other vending machines. You should also identify which components need to interact
with each other, which components you feel are reusable across other vending machines, and
which components are unique to your vending machine.

Assign a group of students to each of the vending machines identified in the Unit 1 exercise. Based
on the components discussed today, have them identify what components they will need to come
up with for a complete vending machine. This could include similar components as well as
components that are different from all other vending machines. They should also identify which
components need to interact with each other, which components they feel are reusable across other
vending machines, and which components are unique to this vending machine.

This can be done either as a homework assignment oras a small-group exercise at the end of Unit 2
or before Unit 3.

5

Oveniew of Mcaprqogamnming Couuse: Unit 2. Coimpts of Megaprorammin& Workbook

Each group of students working on a particular vending machine should come up with a list
of components that they need to build that vending machine. Each group should present its
final list of vending machine components to the class. For each vending machine, discuss the
following questions:

"* Have they designed a vending machine?

See if the other students can identify any missing components. The point of this question
is to help the students see that, like requirements, making sure that you have everything is
difficuft.

"* Were you able to identify "reusable" components (i.e., components that could be used
with little or no modification)?

The students should understand why having reusable components can save time and
money. These components can be software programs or actual vending machine hardware
components: the idea of savings remains the same.

"• What components did they have to create to handle requirements unique to thcir
vending machine?

All solutions will have unique parts. If there were no unique parts, then the solution would
be exactly identical to another problem/solution and you would only have to build one
sol&.ýon.

"* Would they consider vending machines a class of common problems and solutions (a
domain)?

Yes. There are enough similarities to make it worth your while to understand the similarities
and differences among vending machines and to make use of that knowledge each time
you build a new one.

"* What are some of the benefits of this procedure?

Savings in design, savings in manufacturing, aesthetic uniformity, etc

When you are finished, answer the following questions:

"* Could you use megaprogramming concepts to help build vending machines?

Yes. There is enough in common between vending machines, yet enough differences, that
it makes sense to study their similarities and differences.

"* What would the domain engineer do in this domain?

The domain engineer would create reusable vending machine components and documents
that describe how to use those components to build vending machines.

"* What would an application engineer do in this domain?

An application engineer would talk to a customer and use the products created by the
domain engineers to define and validate requirements that met the customer's need, and
build a vending machine that satisfied those requirements.

6

Overview o Mepwprogutming Coawe: Unit 2. oncept•s of Megprogrammin&. Workbook

2. Discuss the robot problem from Unit 1, Problem 4.

"* Make a list of common jobs and tasks that the three robots in Unit 1, Problem 4
needed.

" Make a list of specific jobs and tasks that not all the robots needed.

The answer to these two questions depends on the students'answersto Problem 4 in Unit 1.
However, they might observe that all the robots move, and they search for some type of
object. The t.pe of object, and the robot's response to finding it, are two things that vary
among the three robots

TEACHER NOTES FOR HOMEWORK

C•onsider the following-are they domains? Why or why not?

* The process of applying to college

Yes. Colleges usually ask for many similartypes of information on their application forms,
yet there are enough differences that you could not use the same application at more than
one school without any changes

0 The process of proving equations

Yes. You follow similar steps in solving any equation. However, the order in which you
follow the steps and the exact steps you follow will vary from equation to equation.

* The process of school bus scheduling

Yes. School bus scheduling will have the same coordination and logistics problems from
school to school and county to county However, there will be enough differences (e.g.,
number of buses, size of district, etc.) that you could not use the same school busscheduling
system for every school

* The process of transportation scheduling

No. This domain would be too large tojustify establishing a domain. There are similarities
between different types of transportation; however, there are too many differences from one
transportation type to another and not enough similarities that it will not pay to generate
and use the domain.

2. Describe a domain in today's world of teenagers. List the similarities and differences in your
domain.

* The answers for this question will vary. Look for a domain that has enough similarities
between the problems and solutions and significant differences that it would make sense
to establish and use a domain whenever you need to generate a solution.

7

Overview of Megoproglaumting Coune: Unit 2. Cccep~s of kMegaprogmmiiig Workbook

This page intentionally left blank

8

0
V 0ý 0

0 0 Cý 16
6) 00

cm :E 0

0 ýa

0 c
a) 006);

.C

0 t! o
CL a).- 0

0 CL- E

CD)- a) =

a)0
6) a)- -z 0

C.) 0)
.0. 4-- 0

0. co) U) ED
C~>%

0~4 CL -
C a)> CD t

o-0 CL

0 0U) V) z
C 00 C

t5 (j CL 6 .
0o a)0.) -0 0

c "0 L 0D
Cto o CU 0aC)

0 0~~a 0: a uE C
0~ 4)6Z6. 0.

"a)a))o rE-68 iu 9~2 C

CU CUCO
0) CI6))L0 0 t .) E

C60 * j a

-0 'ca IS 0 P,

f&

C0

mime
NE

a.
< -

* -
mi-I

0..w

0 ~ :3 4Zi, 0 c 0 0
00

0 oO CO~ 0 F= 0 -
E 0)

0) 00 .-0 Ž0%2 (Do D
0L4 : - 3 . 0) 0.

:3 E)E I
a) c ~ ~ 4

0 0 2 0 c2a
0a _ _) (a 4Ca) 0_ c _

0L wE 0 2E E 40

~0 ET 0 - c*0 -C
*~ 0 0 (D %> 0F 0

CD0 ~ 0 0 CL 0~ o 4)-0~C r-o D 0
w a fl4ý 4 -a.)j to 4- 0

aoa) 0. 00

04-0 E ~40 a
07 75 4) C. 6 0 I

0 c u'. 'QaQ t~ E CE
0.0 ~-E 0 2 ~ O E taý co

-0-Ca 0 0~
.2 -0. - ~ 0)

W (o~ M E 0)..- 00 ~ CL a 0 0

c~ ~ 8) 4) 0 (D~ >.) 2- 0 o ((
0 0 Wa to0a.'d 0

CL 0 E 0 -0 0 0~a 0a) 0 m
(a C. E)..C0 -(6Vs a-

4o0 uE O L'-mE- 0 U 4- c W 0 W

0 - -0~- i .- r L- a))E
0

c~) a E0-0 tC XM 04) 0 :3) 1 v
M -0 0N 0 EE:5 a)

Or-~ -- -T w E "5
W'- 2 D.c0w 0 ,,.cC o) 0 oO) T 0 CL

CL X= 41o o- oý %- a~ :E 4ýa
maa (D.a) :3 4 go: = E , ra)0*- -0 0 0;

l _. a
0

C 0 * 0)4 UU) L, 0L CL

IS 0 >% E!0

0Ac

060

U-U

CL-

IL IL

000,;

(U U~~ pow.5- a)(~. -9 .a ~ A. C

0cm 0

,-0 0 3-c o0~o ! c "6o~~~ CE) (U 4) ~ Uc)Ca
-U.)) G z 0 W

a. E~ F'" '0'

(D oW t; i c: 3 60', .
(U 0 - E <~ C: 02 00 I

E 0 0 0 ui -0 -0fl -V;E 0 DQ

8- > (D 00 a)

zU 0 30 C 0 - CL(l
-WC) C ~ >--ý Q. 0

(D *I z~0 co 0
0 ~~ (Ar fi, £V.-d~~' 0(0 04

EC (UCD. 0
0 0CŽ W L-(po4

U -) .rj 0h'.

co 0 E

CO E -= 0 ac~ m).-.0 (A .0 'a

:3 (A- CC0 32.
Co . (D 00 0' 0 '2 0S

r- CL0 0 .-. C.> o(
0

.a V
E2 00O 2 W - C) . 00

E 41 0 W~ (D - CO CL 0>ýc0 0

OU 'a> -- E o Co 0 =).C - C 0.0 0

0= -Y 0 C 0 7a r) 3- E> 0
=v 0f c 0 0 E 0 ~ >U

m x * n .)C - -60 O 0>

000 E C)o WZ> (D 0 to OC

0 ~ U4)U =E o, -'400 0a

'o E ()c 0-* 4)r- c (

00 -.- Mo ooo. *r- 0 U) -

(U00 -,ow-Q 7((UC Ei > 0W xo0 r0. .0 _L E3U -),

'a 0. -~ 0U- u)(f >. Cf ; E. O=

6 oU C0 4) Ea

Z'(CD. CO C
0 :t (D

.c ~ ~ L 0.- 0 C>C(~~ -
0

0 r- > 0 CC) 0 ~
00 -c ,aE1 vr ~o 3: 0 =[C> CL W 3:E

0 g 0W:) =0 - 00.CL :3-0 MXX) A L
U) 0Cf -C >,- 4i 3-03o

E 0C - " 0 (D-0~a 3C 50 w

o0 t-: E2 >, 0 S FA a- ~ > - 0 0 ..

E
4) LCt

.0

0.

C

a)c E

4) aO)

C 21•-.. om

/ \U)-0 ._=.

LM .U

0

:38E a) 0
0 1-

E CL
S- W - 0 0

EU Eto 0E
c 0)o- 0.

aG) 0

t5 0'

00
_o- a) -0

:3 C E"aý2 0

.. 0-00 a 0 'r- ,- co Alf
) 0z- 0

oW 0 - - a0) E %- ,
oo.• W .

=-0 0

EE a n

_ o1o
oC.•0 (Ea 0 c E

0) W Z 0 W,•_ E
r E

00~~ ~ co4- r-) 000 o 0

US~~~0 3r. W: r 0

~ ~ 0
'-C *--0 = -..- a) 0 a) OC0,2W E 0 cu) 0 O- LS -0 C 4O a) U 0a

L.. -.- 000

0.0 CL a)* 0- E 0

00 zcP~~E~
C0 09) "

Oo0).0 E * 0 CO w a
-0a)C ~ I -c

0E =O -. co a)~ a) wO

*

I
0

_ 0

-- oc

. 0

ctsb t.o

0.-M

4) 0)

a4)

0IS,
OM .5~0

(U 0 o

0o -6 Zoi'- E
MU 4-4 4 V 0) 6-

0: ~ E C U- m r (n to 2
R- ul '. a)Q . 3 m t5Ci E (a " w 0o -6

CLS=C 0 0 0 4o. 0a) D
4- 4) 0 CD>-a 0d

0 0 Q= X -0R.:30)
:a co- 4)

;r- 0) -0 U)(_)>-) C

Z EU
to 1e O 0) a) Q t

a) 4)--U
u) c-75CD> .

a- o)C a 0 4

m -c -.
0

0 2~ 0

o) c- C c w wU)X 0 ~O 04-0(r cl
4-) 0 O0C ,

~ -0 C-- 4' .C a)a)

.-. r a)a 0 (D E w cc) 0
0~(-0 E im o ,r-V

"5- 0 >, (0 D (D a) a 0 - (

0> 0C 0) M 3 0 :
'0- 0 c. L. .- 00 0a 0) o

co a)g. -- = C

4- ~ TL 0 V W 0) T

oa.e.(o 4) A 6 E .;,--4:
2.o 0 ~a)a)L 0 -r- 0O a =co CD ' 0-s- o r--0) o- cn

E a) -E 4- 3g -6 -- a) a.

u 0 5 (0 4) 63 E
00 o- 0 C. 0- 0G Ž0C.C .

0 aa)t -. c E a)) D 3

%00) E cD2 0)c 0 l(U~~ ~ a) - c '-' z~ -. aC aa00C 0 a)- (s
'R c 0 00)-(u L 0

o..~ C.)0 ~
C's. (1)0ý U). ZD0 a) ,c4

ý :t' C)4- 4-4- 0)Z 0 i

o0 :3~ J~l)

USJ ýa 0

0

zu 0
Lu 0

.00
0 (

C

Mo 0.IVI
Co4

owe)
LM E

a +

Omm

..c U) _~~X 0 2

0as ~ W -

E 0 Cc) . a>

0 0a *) MU

ca~~ ~ ~ c r0- t
>) s) -0 U U)

in (M - - " T 0 (i .,
C C m Wa) -C

4)I- a)4 4) (U0 a 0)0L

4) C " (

-- C) EU-4 w a
0Ž 0 0 OC.

a) (U a)- 4-- e-i

OZ~ Cro a) a
:3 0q .0 0 a)U

0- E(U
W ~ - CO 0)

~~a W)~a4

a) 0 C ~-~ 0- .. 0
0 in- .- ~-C "

0 in. a) CL a
0 0

a .<) r- , E- E a) _~ ?"a) E.

(U W: (a) C .- 3 0a) W) a)
a) M~ W ~ W-S W-- 0

Cs 0 r4- .0 T a. > z-0 o a L.U)-

o 0-- 2, -0 E4 a) r- 0- CL.

-c ~ ~c W0 0 4-e (U.~
a) 00 4). C - 4)). S

`)0 o LO 4ý (a ~ - O 4
20 (0#) C4 (1)0 o* .

S0 CO aU -ZE (D -.C= E 0u
-o ~x .-. a) aE c Ew

:So V_ (U -C) (a) 0 as _L.

Z -a~ CC o 0)
0 s= 4) U) (UO- o

-~ U))-)~0 >Ca
"" c 0-U E -- (Uaa _!d 0 -o to c 0

C--- 4.
0

* .CO(U 0 a) 0) j

Ic

CCC

U)o E

EE

CLC

AEl,

SS

0) o r C -
6Ca

C~~~U a...4 E
-0

0; 0S 00
.80 00

c 0 Q a

SEm E 0 0 *5OQ E
S 0 0L 0 m~ 0CL 0

0) 0 C c001 CL D 0

o 4) 'o OW

-j U)T4QwgE E 0)
0 ;-) -0 0.4LWtu 0 GCa

2 04) 0 CL 00 0

C C oc "E 0 W0
MC " o t: C CL

E Wo0
-- 0 m

at
EE ECL 00 2?-i

00 - o00 E- M
. - 0 , C'. 0); 3

cr - E - 5:4)W
m 0 c 00 v W t 0 W

W 2-' 0. 2Cn~ - ~ E W
2 0000 02 01- >5 o= 0

. 0 0 4) 0)30 >Co'
0. ~ .0 =u n 5 0 c C0

>0 0 - o 4) 0 0 0
to 0

cu -0 E~ 0 0) 0 n ~ o
0 W4n 0) to 0O W ,I. mOE

" a" -)3 OE 0)
0) E ~ E CLa~~O4

0) 1-- Wo0 00 00
-09 .4 0) 0 0.0 - TO .C0 S 0

00 0 :)r 004- =.C'aC(a
.G C E-0 : ;1, 0 0 c

00 000 166O 84-v -
0 0. 0= '-) a ~ * O O") 4-) 58 4) 4

00 C0 r' r 0. > CC

c~ ~ 0 E 0) = a
Mn -CL~ lOg4)-0 U

C)4 0 0 4) a0
EC0

000

0 CE *: -s >~ -0 45.4; 0 .E 0E 0
04 -0 ~ ~ 0) ~ 0- 'a

0 = , c'..<- Z
0 -0 S .6 ~ I - " - CL c m W 0

. 0 - 00 ~ 0:=0 a) i0

0 -C 0 U)

~50 iCL 0 2 . a E0 .*0 0 O.-0~ 0.
C f l) 0- L_

.2 0
cl) EC 0 -0 C) z 0F 0- -

0I E =&. (1 1 (k 0 -0j

CC

On. to ~

0 03

CU a
U-0- 04 0

cc E0 E

4) OZC
'~ t-co

Overview of Mepprogramring Cours: Unit 3. Application Engineerin. Workbook

UNIT 3: APPLICATION ENGINEERING

SUMMARY

Application engineering involves:

"* A customer who has a problem

"* An application engineer wlo solves the problem

An application engineer solves the problem by:

1. Understanding and precisely stating the problem AND

2. Generating a solution based on the problem statement

Customer's Step 1: Step 2:
Problem Precisely Generate
Statement State Gen Solution

Problem Solution

STEP 1: PRECISELY STATE PROBLEM

To understand a problem, it is easier if the application engineer understands other related problems:

"* What the problem has in common with other, similar problems

"* How the problem differs from these other, similar problems

An application engineer precisely states the problem in terms of the dcmain by:

"* Deciding how the problem differs from other problems in the domain. These decisions will
require engineering judgment in addition to cold, hard facts.

"* Validating the problem statement (i.e., the requirements) to make sure they precisely express
the behavior the customer intended.

The following decision trees show part of the decisions needed to identify how problems differ in the
automobile and robot domains.

Overvew of MegepIrogamming Course: Unit 3. Appicalion Engjeerin& Workbook

Example Decision Trees for Precisely Stating the Problem

Automobiles Robots

haul haul haul search search a search a
cargo families self a forest tundra building

sparse dense averageA
drive on drive on " ' X4q I

pavement dirt itter person mineral surveillance

deposit equipment

live in a live in ahot cold pick up don't pick
climate climate objects up objects

STEP 2: GENERATE SOLUTION

The application engineer then generates a solution based on the precise problem statement from
Step 1. To do this, the application engineer uses the application engineering environment set up by
the domain engineer. This environment contains:

"* Software components needed to generate a solution to a problem in the domain. These
components include:

- Components that are common to all solutions

- Components that solve only specific problems

"* Help for how to put all of these components together to form a solution.

The following figure represents what happens in the two steps of application engineering.

2

Over-ew of Mcppro•lamming Course: Unit 3, Application Enpnecrin. Workbo"k

APPLICATION ENGINEERING:

Customer's Problem Statement

Step 1: Precisely State Problem
Precisely State Problem

Preciely SateRooble

equirements

Step 2: Generate Solution

Select Parts

Compose Parts

fParts fromq Domain
• Engineering

Solution

3

Overview of Mepprogranuning Course: Urni 3, ApplicaLion Engineering Workbook

This page intentionally left blank

4

Overview of Megaprogramrn ing Course: Unit 3, Application Engineering, Laboratory

UNIT 3: APPLICATION ENGINEERING
LABORATORY

PART 1: BACKGROUND

In this laboratory, you will practice application engineering. Imagine yourself to be an application
engineer who works for URW. Three customers approach you. Each has different needs:

1. Customer 1, a farmer, owns a large cornfield and has trouble finding time to harvest it. She
wants to know if you can provide a robot zhat will harvest her corn without human supervision.

2. Customer 2 is from the Alaska National Guard, which is constantly rescuing people who
wander too far afield in the tundra. Mounting a rescue party is time-consuming; people have
died while the members of the party were gathering. The Guard thinks having robots ready
could eliminate these life-threatening delays.

3. Customer 3, from the National Park Service, is concerned about growing amounts of litter in
national parks, and wants to know if you can provide a robot that can pick up the litter.

These three statements correspond to customers' vague understandings of their problems and of
potential solutions. Your task in this laboratory is to help these customers understand their problems
fully and to provide them with robots that solve their problems. To assist you in this, we have provided
you with a tool that automates some of the application engineering. Part 2 describes its use.

In brief, you will be asked to generate the software for a robot. You will do so by following the
application engineering process for precisely stating a problem, which you saw in class. Some of the
decisions you must make can be answered from the three statements above. Others may require
clarification from your customer. Your instructor will act as the customer, answering questions you
might have on the requirements for the robot. Keep in mind, though, that a customer does not
necessarily know everything. As an application engineer, you are expected to use your own expert
judgment when your customer does not know what choice is right.

PART 2: EXERCISES

1. CoRNFiELD ROBOT

URW manufactures robots that can harvest corn. You must act as an application engineer and help
solve your customer's problem by resolving the decisions in the domain. By doing so, you will create
a model of a robot that harvests corn. You can use this model to generate the software that controls
the robot. However, you cannot just generate any corn-harvesting robot. In the first place, your
customer has a specific requirement: she wants the robot to end its mission at its point of origin. In
the second place, she cannot spend more than $13,500.00. The robot you model must not exceed this
price. Better still, it must be the least expensive robot that can do the job.

You will be informed of the robot's price as part of validation. However, you should know that two
factors determine a corn-harvesting robot's price. The first factor is the maximum number of ears of
corn it can carry. URW offers its customers robots that carry between 50 and 500 ears, in multiples

5

Overview of Megaprograniming Course: Unit 3. Appfication Engineering, Laborator

of 10. (The decision to carry 53 ears therefore results in a ..oot that costs the same as one that carries
60 ears, although the former robot will still pick up, at most, 53 ears.)

The second factor is the number of batteries with which the robot is equipped. All robots have at least
one battery. Each extra battery costs money, but increases the distance the robot can travel. To
estimate the minimum number of batteries needed, press the F 1 key when you are asked to make the
decision on the number of batteries.

Question A. Find the most appropriate robot for your customer. Do so by repeating the process of
precisely stating the problem, varying the decisions until you believe your model of robot is right. Use
the following graph to correlate the cost of each robot to its carrying capacity. What trend do you
observe?

C C o

one with th ntinimurnCarrying Capatcn teon ity ofe Robot cryngcpciy ecr h

time needed for each one to execute. Which takes the least time? Would you have created a different
robot for your customer if time for harvesting had been her highest priority?

2. RESCUING ROBOT

Generate a robot that meets the needs of your second customer. What decisions related to choosing
the mission are clearly invalid? Why?

Run your robot several times. Notice that there is more than one tundra for your robot to search.
Compare their characteristics. Which one requires more energy? Would you recommend that your
customer equip his robot with enough batteries to handle either case, or do you think your customer
would be satisfied with a less expensive robot that could only handle the low-energy case?

6

Overview of Megaprogramming Course: Unit 3, Application Engineering. Laboratory

3. LTTER-GATHERING ROBOT

Generate a robot that meets the needs of your third customer. For this customer, you will find that
you need to try more than one robot to determine which one is best. The reason is that URW has two
searching strategies for robots that operate in a forest. One is to "sweep" back and forth, horizontally;
the other is to zigzag. Which is more effective depends on the forest in which the robot is operating.

Precisely state the problem for this robot. Use the results to fill in the following table:

Density of Cost of Robot
Trees in Forest Search by Sweeping Search by Zigzagging
sparse

average

dense

What do you observe about robot cost versus forest density?

7

Overview of Me•a•ogramming Course: Unit 3, Applicalion Engineering. Laboratory

PART 3: USING THE APPLICATION ENGINEERING ENVIRONMENT

This part of the laboratory describes how to use the application engineering environment for
specifying and generating robot software. Your instructor will tell you how to invoke the environment.
Once you have done so, you will see the following menu (the main menu):

APPLICATION ENGINEERING FýTVTRONMENT
FOR

ROBOT DOM.

1) Precisely State Problem
2) Generate Solution
3) Execute Solution
4) View Generated Software

Select an item:

You will follow the application engineering process by selecting each of the first three menu items, in
the order listed. Item 1 assists you in precisely stating the customer's problem-that is, decision
making and validating the problem statement. Item 2 generates a solution based on your statement
of the problem. Item 3 allows you to simulate execution of a robot, using a modified version of the
Karel executor program (please note that the programs you generate will not work with the Karel
compiler or executor you have used previously). Item 4 lets you see the software you generate using
Item 2.

To select a menu item, type the number of the item, followed by the ENTER key. If you need help, press
the F1 key. You can use the backspace key to remove the last character you typed. When you are
finished, press the F2 key to exit. (These statements apply throughout the application engineering
environment.)

PRECISELY STATING THE PROBLEM

Selecting Item I from the main menu gives you the following menu:

PRECISELY STATE PROBLEM
FOR

ROBOT DOMAIN
1) Make Decisions
2) Validate Statement of Problem
Choose a step:

Use this menu to make the decisions needed to identify a robot that meets a customer's needs (Item 1)
and to validate the decisions you have made (Item 2). Once you have performed these two steps, press
F2 to return to the main menu.

MAKING DECISIONS

Selecting Item 1 from the menu for precisely stating problems lets you step through the
decision-making portion of the application engineering process shown in class:

8

Overview of Megaprogrammiag Course: Unit 3, Application Engineering. Laboratory

ChoeChoose Choose if

Choose Choose lf1=•

•1Search P I orest

RStrategye m Densettys

Choose Number CaryigoseEnin

of Batteries CarryityPoito

You will be presented with a screen divided into three windows. The upper left window shows the
decision you are making and the values you can choose for that decision. The upper right window
shows all decisions, including the values of those you have made so far. Each time you make a decision,
you will see the implications of that decision in the lower right window.

You will make the decisions in the order shown in the picture. In most cases, you will be given a menu
and asked to choose an item. Enter the number of the item. For Decision 5, you will be asked a
yes-or-no question; give the full word as an answer, not just Y or N. For Decisions 7 and 8, you will
be asked to enter an integer value. Remember to follow your answer by pressing the ENTER key. When
you have made all the decisions and think they meet your customer's requirements, press the F2 key.
You will return to the main menu.

You can abort the decision-making process ,. pressing the ESC key. If you abort the decision-making
process, you must make all the decisions again.

You can use the up and down arrow keys to move among the decisions. You can use this feature to
examine subsequent decisions you must make or to change a decision you have made. Keep in mind
that you must always make decisions in the order shown on the screen in the upper-left window. If you
change a decision, all decisions following it need to be made, even if you already made them.

Each time you make a decision, you will be shown the implications of that decision. These implications
are presented in terms of how they affect the robot's hardware and software. You can feel free to
experiment with different combinations of decisions. You should be able to see how different customer
needs result in different robots.

When you make Decision 8, you will probably need help estimating how many batteries your robot
will require. Press the F1 key, and you will be shown some values. Bear in mind that these are
estimates. Depending on the nuances of the terrain in which your robot operates-specifically, the

9

Overview of Megaprogramming Course: Unit 3, Appication Engineerin&. Laboratory

distribution of objects and obstacles-your robot may actually need more or less energy for a
particular mission. Keep in mind the consequences of failure as you choose the number of batteries.
A robot that runs out of energy before picking up all litter is a nuisance. A robot that runs out of energy
before reaching a stranded party of hikers can have tragic consequences.

VALIDATION

Once you have made all decisions, you are ready to validate your problem statement. In fact, much
of the validation is already done. During decision making, you could not state a carrying capacity for
a robot that does not pick up objects-the application engineering environment will not allow it.

However, you might still have made mistakes. For example, you could have misunderstood your
customer's requirements and how they relate to the decisions. During validation, you are asked to
review the decisions you have made. This is the time when you should make sure they are proper. To
validate your decisions, select Item 2 from the Precisely State Problem menu.

During validation, you are also told how much the robot will cost. Unless your customer has a very
deep wallet, you should check to make sure that the robot's price is within the customer's range.

If you decide that your decisions are improper, you can easily revise them. Exit validation, and choose
Item 2 (Make Decisions) again. This time, you will see the decisions you made previously rather than
a set of decisions waiting to be made. You can use the down-arrow key to move directly to the
decision(s) you want to chang ,.

When you think you have a valid set of decisions, press F2 when you see the Precisely State Problem
menu displayed. This will return you to the main menu.

GENERATING A SOLUTION

Once you are satisfied with your statement of the problem, you can generate a solution to it. Just select
Item 2 from the main menu. The program will choose all the correct parts for your solution and
assemble them into a working program, which it will then compile for you. Ifyou would like to examine
the software you generated, select Item 4 from the main menu. You are now ready to simulate the
execution of your robot.

SIMULATING EXECUTION

Choose menu Item 3 from the main menu. This invokes the modified Karel executor mentioned
earlier. Unlike the simulator you may have used, the program to execute and the map are chosen for
you automatically. (After all, you wouldn't want to run a robot meant for a cornfield through a forest!)

Prior to execution, you will be presented with a set of questions that control how much information
you see during execution. Be aware that this information, although interesting, can add up to 15
minutes to execution time. Moreover, you do not need it to complete the laboratory. You should opt
not to display it if you are pressed for time.

to

Overview of Megaproprauming Course: Unit 3. Application Ensineerin& Laboratmy (Tacher Notes)

UNIT 3: APPLICATION ENGINEERING
LABORATORY

TEACHER NOTES FOR LABORATORY

Comment: This laboratory lets students use an application engineering environment. The
environment implements the application engineering process for the robot domain covered in the
Unit 3 lecture.

The environment plays down the role of programming. Students create programs, but not as they have
previously. listead, the environment automatically creates the software based on a problem
statement the student provides. Theoretically, students can perform this laboratory without ever
seeing any software. The environment contains a tool that lets them do so; this emphasizes that
software is necessary to the robot but that it can be developed in more than one way.

What substitutes for programming is:

"* Eliciting and understanding customer requirements and elaborating them in terms of the
domain problem space. The result is a precise problem statement.

"* Quantitative and qualitative analysis of requirements to determine satisfaction of customer
needs.

"* Simulation as a means to validate customer requirements.

The second item is most significant and probably less intuitive to students than the others. Students
are asked to study problems and certain propernies of solutions purely in terms of domain problem
space concepts. They are not allowed to think in terms of primitive Ka;el instructior. or even
algorithms. They must act as apphication engineers, not programmers. By having them do so, you can
demonstrate to them that programrning is only a means to an end, not an end in itself.

1. CORNFIELD ROBOr

Answer to Question A: This question asks the student to analyze a problem without first trying to
generate a solution to that problem. The application engineering environment presents all the
information the student needs. The student must first precisely state the problem, selecting "field"
as the terrain; this fixes the decisions on search strategy and object type and obviates the decision on
forest density. If any students wonder why, you can explain it to them as decisions already made by
the domain engineers:

"* In Fields, URW only knows how to build robots that harvest corn. It doesn't possess the
technology to build robots that mechanically harvest, for example, tomatoes.

"* The domain engineers' studies have concluded that sweeping is a more efficient strategy than
zigzagging when harvesting corn. (Real harvesting machines work this way.)

The student must choose the mo-t appropriate robot. The assignment defines this as the robot that
costs least, but can still perform its mission. Since carrying capacity and number of batteries are the

11

Overview of MNepropaniming Coune: Unit 3. Appticatiot Engmerim. Laboratory (e~aher Notes)

two factors that determine a robot's cost, the student must experiment with variations of these
quantities to complete the assignment. The students will simply have to try several values of carrying
capacity. They can determine the number of batteries through the help facility (available by pressing
the F1 key). During validation, they can obtain the cost of the robot they have modeled. Using this
information, they should create a graph similar to the following:

15,000 -

14,800 _

14,600
14,400 __--

S14,200 - - __ __ - - _____

S14,000 --- -_ _

13,800 0-,,,._ _

S13,600 0_
o13,400 _ __

13,200-
S13,000- - ___

S12,soo:
U 12,6007

12,400 -12,200- -I,
12,000

40 80 120 160 200 240 280 320 360 400 440 480 520

Carrying Capacity of Robot (Ears of Corn)

Inform the students that they will need some strategy for choosing carrying capacities, unless they are
so motivated as to try all 451 possible values. Note the trend of cost increasing as a function of carrying
capacity. This should motivate them to try a binary search strategy. Binary search by itself is not
adequate, because the robot's cost does not increase monotonically as a function of carrying capacity,
but it is a good start.

For this mission, the robot costs least whet iti carrying capacity is 60. Here is the reason why. In the
cornfield, each location contains one ear of corn. Therefore, each row has 30 ears. Any multiple of
60 minimizes the number of spaces a -,bot m .•t move to unload its cargo and return to continue
harvesting, since it always fills its bag whvi• it is against the western border. A value that is not a
multiple of 60would require the robot to move west as well as south as it returns. Each move consumes
battery power, necessitating extra energy; since multiples of 60 minimize moves, they are preferred.
Note that the robot will make fewer moves if its carrying capacity is 120 instead of 60, and indeed will
make the fewest moves if its carrying capacity is 449 (the number of ears of corn in the field). However,
extra carrying capacity costs money, and carrying 400-plus ears increases the robot's weight enough
to cause it to consume energy rapidly. This in turn requires extra batteries, driving up the robot's price.
For these reasons, 60 is the optimal carrying capacity.

This fact-that robots in cornfields behave best when their carrying capacity is a multiple of 60-is
an excellent example of the type of knowledge possessed by experts in a domain. That is, it is something
an application engineer would know and would automatically apply when approached by a customer.
This knowledge would be gained by experience, through trial and error. Deriving it mathematically
is difficult; in many domains, it is impossible. Eventually, application engineers feed this type of

12

Overview of Megaprogramming Course: Unit 3, Applicalion Engineerint. Laboratory (Teac•er Notes)

trial-and-error experience back into domain engineering, where experts incorporate it as a heuristic
in the application engineering environment.

You can discuss this with students. Ask them for commonplace but significant knowledge in other
domains. A few examples: does your automobile owner's manual tell you how to park your car? Few
do; of those that do, do any tell you to put money in the parking meter? Does your owner's manual
say to turn off your ignition after you park your car?

Answer to Question B: The following are some sample results:

Carrying Capacity Execution Time
(Ears of Corn) (Seconds)

50 1:00.25

60 46.14

500 33.84

These numbers were obtained running the Karel simulator on a 486-based computer. The numbers
you obtain will depend upon the computer you use. However, you should still obtain the same
ordering: a carrying capacity of 50 results in the slowest execution time, and a capacity of 500 results
in the fastest. Therefore, if your customer wants a robot that can harvest corn as quickly as possible,
and if money is no object to her, you should recommend that she choose the robot with the greatest
carrying capacity. The most alert student will also observe that, as a field contains at most 449 ears
of corn, the customer could save a little money without sacrificing execution speed by buying a robot
whose carrying capacity is 449 or 450 (both these robots cost the same).

To obtain consistencyin the results, the students' answers to the questions asked by the simulator must
be identical for all three trials. Be aware that the executor can run very, very slowly. It is usually best
to answer N to the three yes/no questions (see Simulating Execution on page 10), and to set the speed
to 0. You can use this as an opportunity to reenforce experimental science concepts to your students.

You are not actually running a robot; you are running a simulation. If URW were a real company, the
application engineer would run a simulation such as this to learn facts about the robot's performance
that cannot be determined in other ways (i.e., as part of validation). This point is well-illustrated in
laboratory Questions 2 and 3, with their somewhat randomly-placed objects and obstacles. Addressing
the issues raised by Questions 2 and 3 by deriving formulas is very hard. Simulation provides a simpler
alternative.

2. REsCUING ROBOT

Answer: There is no point in deciding that a robot should pick up hikers and continue until it runs out
of energy. The purpose of a "rescue" mission would be either to transport the hikers to a safe, known
place (either the origin or the point where the entire terrain has been covered-both can be predicted)
or to stay with the hikers until help arrives. If the robot continued until it ran out of energy, the
National Guard would have difficulty locating it, so the hikers would be no better off than if they had
just stayed where they were.

This laboratory comes with two maps of a tundra. One, named tundral, is intended to illustrate the
average case. A group of three hikers is stranded more or less in the middle. The other map, named

13

Overview of Meppgropamming Course: Unit 3. Application Enginecrin&. Labonatogy (Teacher Noces)

tundra2, illustrates the worst case. There are a total of five hikers (the maximum permissible carrying
capacity). Four are right at the beginning of the robot's search. The remaining hiker is at the very end.
Suppose you opt to have the robot pick up hikers and return. The robot will consume the maximum
possible amount of energy. It must carry four hikers the greatest possible distance before it completes
its search by finding the fifth. Since carrying an object consumes energy, the robot's energy use is
maximized.

Choosing instead to have the robot stop when it locates a person creates a robot that is probably
unsatisfactory. It will find one group of hikers but not the other. This is not likely to please the National
Guard, nor is a robot with a carrying capacity so small that it returns before it finds everyone.

The purpose of this question, then, is to make sure the students study the problem carefully and truly
understand the needs of their customer. They must pay particular attention to the following:

" Only certain combinations of ending location and carrying capability are useful for rescuing
people.

" The robot must not run out of energy. In a cornfield, the consequences of doing so are
annoying. In a tundra, human lives are at stake. Failure has dire consequences.

" AppLication engineers must make important choices based on their own judgement. The
application engineering environment cannot calculate the right amount of energy. It can
predict average use (note that the robot will actually fail if given the average number of
batteries needed: the hikers are just a bit beyond the midpoint, which is assumed to be
average), and it can predict worst-case use. The worst-case robot works but is very expensive.
Most customers are not willing to pay the price on the off-chance that the worst case will occur.
They want something that handles most cases. The application engineer has the moral
responsibility to present this information to the customer and to try to come up with the best
energy statement. In the laboratory, you might want to act as customer and establish an
arbitrary price ceiling that precludes building the worst-case robot. As part of the assignment,
ask the students to prepare a report of what they expect the robot can do.

One note: the simulator chooses one of the two maps used at random. In a class of 20 people, you can
be 95% confident that at least one person will not see both maps even if everyone runs the simulation
4 times. Be prepared to ask students to keep running the simulator until they have used both maps.
(The simulator shows the map's name in the lower left window.)

3. Lrr•ER-GATHERiNG ROBOT

Answer: The following table was created using a carrying capacity of 250, with the robot picking up
litter and returning to its point of origin when its bag is full. The average-case number of batteries was
used. Such a robot does not have enough energy to complete is mission, but the general trend
illustrated by the table does not change with the number of batteries.

Density of Cost of Robot

T'ees in Forest Search by Sweeping Search by Zigzagging

sparse $9,944.00 $11,806.00

average $10,368.00 $11,673.00

dense $10,875.00 $11,540.00

14

Overview of Meaporogranrming Course: UWit 3. Application Engineering. Laboratory (Teacher Notes)

Notice the difference between the columns. The cost of a robot that sweeps is proportional to the
forest density. The cost of a robot that zigzags is inversely proportional to forest density. If you
examine the code, you will observe that navigating around a tree in a sweep requires two extra moves
and eight extra turns. By contrast, zigzagging around a tree requires four fewer turns than if the tree
were not present. In theory, then, a robot moving in an extremely dense forest (or a larger one) would
do better to zigzag. In practice, a Karel map cannot contain enough trees to make this worthwhile.

15

Overiew o(Meppoagrammrng Course: Umt 3. Application Engincnin. Labornoy (Rachcr Nots)

This page intentionally left blank-

16

4-

1:44) 'aw t 0-
.0 co 0)~

"x.S (D C C

0 0

CD (U0 0 0

0
0 Od .0 4) u0C

a)E Ea)a
CD C O

4- CC/ 0-0
%.4- C 0 a-Ci

X0 0.. >) *- (a
-0 D0 0 C C (

wU i. c COC .C

-C to0 c *- 0)

4i) 0U 4 C >%i D0

E3 (noE
0 OCr-f xo 0

_(O a E C
CJ)C C~c 0)C)

C) c. CD 0 0co

aX 0 ~ C) -w. 4)E. CD 0.

04) x0 0 E CD a
0 E0 L0

C .nO. C C>C 0)(0 (
O C U 0 .= %-0 2 .. a

3 C C)
-0 0 C

(-0 . r CU c o Ai 2 c 0 0
I-~= C: EC. ~ j = 0-. - 0o~(D4 4) 0) F- 4- 4) .-OaZ (a (aCD 0L CL CD (a E

03 z0 0 0~E (0

CD >f~.. (D 0) .2 CU - (a~ -0) E 0
w ED cU C. ~0 '. (m I .0 0

:1-o 0()0 C 0 0 CDMc~ 0 c C.r -z -)LU 4ti'C O C 0=~ ECE 0 -(D 0 0CL (D 0 a C
a)C4 ma) 0 E~ 0C0.a 4) (D 0 C E

m- - 0 = o C O C)'*LL 0) W.- CL) U

W- _ _ _

a1)
.5)
c

w
i:

00

RIM

.,a,

EE

ftU

.. mS
C0

0 0 V0
.CI

-C C) -

_C -C. 75 -C
.0 00 0V 0C

x -C -)cU

t: -1 0 C)o'

0L00 CI. 0

cnx -C 4) -0 -a

U) 44

0) (hi.
a)C (' (0()a :30 3 -*-

Cl = o.0>. >~c C- (DC

cu CO CM 0 (
C _D

Cu~~~ -c 0V . ' -

Co 0o 0U).
o = .w C uL 0,

0~ CL 0 1
0o 0 C 0 :3 0.C

Me~~C S Co(o) (

Mu C.C 0) 00 C)
2w 0 E 0 aCo W 3:0w

0z 00 0.
a.~~ ~ CL D-) . I) -"" o ~ a) 0: r_ x Cn

C)C UC C 26 CD -C 0 CDC. 0-. 0Z on0Ie wo 00' C u
ME 0 Cu0 0 0-0w 0-C

E2 0
0 0 o -CC 0 E. a-C

0D 0L t: 0 4 0 a-

aO Cu" 00 Co aw UC E)

Z .0I 0 Cl 4.0C0 4) 4-C

- 1) o 0) 0~ u 4 - ~
tv2O~ ~ CO ca a) C>to au

Co 0) . n o 0 C
0-l (D 0) 0 3: (

- a-U. .C M..

--a X- EC

U)

0 41

4))
CL

.2.

060

O~h 0

-C > 0

0> 00
2

-~ .- 0 4)0

r-. c C C XC-.

75t E -o 0- - w ~ C

0- w 0 0 0 0t c-)

0 2 0 0 0 E -C ()

E _ 0 0 Co T h0: 0

"~0) -C 0

a) E2 a_() 0

-~~ 040 (D- 0~

CC w (5 4) 4-
(D)C 000 C .3 00: -

c~ 4-- 0 E0 2!'C~c
0(C 0 "-' Oo CnO W OzwC

:30 4 ow

EV~f 0 c ~
:~r (D0 c: Ca 2 0

0 0
00~0 ~

cts C CUo)

O 0 0
co 02 0< 6~

coC -C 0 WaE
-. 0- CDCtoOa) E

0~2 oO 0 C0 W (a _

~~c CO 0 ~ O
2 w o a) Z ýc (D ~ Z ,Ž

0) C0 W
0 CO0

E -5 - 0 0 0 0), -

-4 0 0) Cc- (a0

.C.. C 0 3I ri - 6U)

c-

U) >k
0 O) cc

0 0 w 0

0 0 0

0 0 m

0 .U
- E L)

0 0E 0
0) .0 U

00.
.' 0 0 0

(U w

*~ 0 .0 .0

a) 0 0 0
U) U) U)

0,

E

a))) (D
I- I- I- I

1--Eo cc 0 0) a0
0 0- ZC

C.) -F -0 ,ý

C 7 >%-a 0 S3 c 0
E 6-0 0

.~0
(Un) 0 *- i

:p0 a)0 0E a

0E~ c -a) CCw0)U

cn _ a)W) CM 0

E U) c ~ ~ Ec
c C~

0 0 US. 0) ~
.20 4-

~~~2~ (D* C
oD-) E (a-..C 00 0 - .00

W0x 00 E-- 0)cm
-a) 00- CD C

19= 2: *ý . .
-00 co C D na

_~( j3C G"5 a a - 0 a) *0

EW-t E.a -C = - L 00
ý:f CaS no 0 no ý

28= .C co* to (D-o
0)oo.E 0*d Aw0  > 0E a) -v

C*0 C cn oCD. 0
co' 0)0) c

(n C; C: % 0

a) 4- co.. 0. 0 0 0 ca
ino a) H i-0) - 0 )

0j 0--m ct -o CU'
4 

4). 0o

Eo w 00 0 0 a)
AC 0 E -0aa(0 0 cm c

4- E 0

E~C EC vw E 3: 0

a) D.- 0 0% .0 C' )
o T ,-0 o0 ~ V 00 0. 0 _E w c ~

CD 00 0 a ) 0 ~ ) ~ W ... ~ C 5 C

0 E 5~ -6 0JU
-a X- E C 0 cu0 00 0 0



0 0

C -0 0
4U ) ) owa)

0)0 .0

s-.0 0
05M 0 4) 0)

Cc "0 (U

Cc 0 C 0  .0 0.00a ME ch0

0a Ca"M)0B
0.CD0 4E4.

000E
0u 0Z4)c

E wc

0E

0.00>

Cb.% 00 00

0 E 6



0~ ~ 7 5 : 3 ) ) 0 0

4) (fG 5 a) 0 c 4) -Z C ) 0 C
, .- 02C :-

,c) o ) M ) 0a) . 5

00X _o iii w
0..04 *S >0 0  0'16 E0 E"' :3

> D0 4) r- c E-
to- c 0 C = a) 4-02

0) (00 4. mr CC) E 0> IC 0)CD>ca o 5 .0- ) > 00) co ( v0 8: 8 -r-.; 0 -0L- t- '> 0 )a .-. :34-4)~a c~ 4Oc >, oo l
0~ E~ E

0~l) 'a = c .a ')I0 0 CU 0)
:3-.~~l9c -a o wa. (no

."0 0) C: 0)0 3cr-) )

>E 4)5 0 ) m:iot 0 c CI

0 0
(a ~ ~ 0 a))> 0-, (aaaoL)
~ tD0 'C0 (D . C~a~~

2 2 00 ) D 0 Lco a 0 co
to~ 0 a) coc o-C a m :

0,.,, c (a
"(I cow c : 0 ýr E cu w~ 200 wewC(D E a).. Z - -0 DwC

0) - a). W::~ -0 E a) 0 a
a) ).E 0 0 A2 aC

ca 0 : U)-D .a) 0 U

a ) , - (D 0  C L - 0 ) 02L U

M:3 E 0) c -E a a) cc a 0-
(f

40 0 2 0 0- a)~>a(a 0 a)0 0 a)
a) (D ") 04-. C 0~-j -w E - WO.

M )a) ( )O C0 2 :O O 0. L. (0-0 E
a. > J0~CC ~ ~ 0 5Z0~2 ~a) c -I ( )C ) ic r 0 U

(fOU U) 0fl-a C)-a(0: MW:3

OUE.m'~0 4) 0 o c C.a)O 4 -

-3 4-016 ca c a)2cý2

0 coZU)a O E

W" _ ) cs =E (



f

L •• ° t.-•

0.0 :.,

• - ,, •
• rl •

S0o .oU "

EN ......
• F-

°

.|
I o

• .i

:,



U)4 000
EU 0Y .CL- a-.*-U U)

.SŽ :ý 0(ut 'to0'0o 0 .0
4)(0, "->~a ca %..G 0 2ý0- CL. a-. -4

.Et (D U0 0
0 - 0a) %-.C 0 -o(

0 V -0 - 0 0
02 U) 0 > c) W)

a:22 .. J CaE
Ci~ o~~ (fj w0 0 .(0

*CI -., -I E
4)0 3, L. a) U)t 0 0

U) 00 DO --r 0 CD
~- C G). .b0 c 3 .c) )a
c ~- 0)C0 a) cm.~(U~

a) O 4) 0 o .2
4)4) U 4) * E. Ca *-(U o 0

*..- 0 - Ow - 0 a)C UL
M U~)C >o O-' o 0

Ua)0 m . - 7

QU~ 0. r.- ~ 0 0 D

_r- mV0a) E 0 Eo
L- U) 0 t0

(D- r- : O

o.0 a) o 4CD ' ' 0--. )0 I
4)Oý C. 0- 04) (A.. Q- I) (UO

U) 0 -~ 70 CL U) ± 2 C U

E 0U) 0 Qa) a) %U

Ca) 4 - C 04- 0 Z ~ C U

a)(00 )064) 0) wt C.D E
C U-( --( --
0) 4-~)a U) C a3 M C L

0n ~iV 5 o o)O 0 0
4,:.C -a3.C a CD 0) 0 0)0) E "

CD~~~a CLZ 00.)Zc~) In U0 ) -a~c 0 G)0C -'

Eai 0 .:= 0 4M - ca5 a) (
J-0)~ a- -6 w CO C'. co 0

Cl, .0m cO~g. o E0. C l 0 co E00 W W

Cc 0 -. C -Co ~ ~ ~ a EZ a~))-
- otC 0 )i.0 m ) w k.. 0 ,-. m

I:- o- mO~~ (O.0) =3 .d .. w 0 =I o0*- -



CO

-o a L 0) E DS Y

000

000
0.'-z

00
WE

00 0
wow

E
-0 ti

En ,:~jo 0)0

rz Lm :L

EVENw

o2 ~ ~:Z0---

C~cE 4)



000 C CMV C: (a

(D 0
I.-.--- CI.

2c I~V c (D00 >" 0-

0~~. C?0 z 4.

~~j5- .2 ~ 000

t- =: A 0 00 C

co E 0 (f) 0 >l Oa -0 (

'.C' a

Ew 3C= aE 00)0 (a (00 0

co a0 Cl (a 00

CM 4c U ) 30 cooc_

.-2 0O~ >, C
-=ý 0C- _ 0. C

_ 0 c CD0
a 7& 0- 0 :3a

0 0 "

c - C~~t 0 C E

C)~ 4-0 04 000 M 0n 0D-

CU 01 0

0--
0.0 r- 4) n " ~ 0

(n) -w'C~ 0 (D 0- 0-:):

ca E N 0 0, m. EN
0o :30 0j> 0 

.
O 0:=0 D

- L 0 ~C.c- 0 o~ 02
CO 22 

c-, -
~~ _ >,v.~- 00cu~o.

S . )0 ) o~ 0 0% > CD

- ) .C '- aCO 
0

C C W-U 0ý r- 0

a): p --) 0~ -6 Zo -60 r



0 ) -0

MOM Cu

co Q)l3 0))a1-) 22) 5- ,

o0 t I - .

"CLu co' 0

0)

aa)I0
c -01) 0 C

'So (w- :
cc CL

C:C

.00

Cl) 0

0 c



o a)( a

CD (1C 0 a) (22 )
0C . :3t -C 0~C0

0) E c -c(U 0 U

U) c a C0 -
( D '- 0 4r * c

I.-0 4-0

0U 0:~ 0 -

wD (D %
0. CL

~0 0a)
*c4 0 0 .x(

o0 o3CDC
a) a)M)

04 .C 0 w
Z.-a = ) 00 a) T)

E 00U
(3)0C U).C-.a 0 L. ;

Z) O.C( CDc 0 CD0
cD 0

w Zz a .c 00 0. 0
-a 0 CX a): a) CL c(Da m 0 0 a)~ U)

'- V..~ 0 CD U)
W)'.~4 r- (o) 0 C 3) (D

w03 0 0 0
(~ 0)f 0C~ 0

0CD O-000 ~ 0 a) 0 E
EC 0 a a4- a)

:3:E 0 tiC
0 __ a) a)

2a) 4 - 'E 0 0C -a '0
0U- 0U a) 0)

0) ~- 0 -0 (D. -C 0 CD UD) 0) 'C.CL

a) s" #.: =C 0 > .0( 0 - Z
Co~ 0l ~4 0 a~.( ) a
U) c- OO. 0 = () 2 0

= 00 Oo < 0 0. W CCD).
o L-mo ca a) 0-

0I ) ~C- 3 . 0 03 0 a)w0
0 uL.- -.- I. O

HO .C -

J-i _%____0_



0ý 0) 0)

0.

a). "- 72 oC

o 
00

CL- M (3
0)
EIz- co

-Z3
01.0

00

00
42) t (1)0



o;-. L| U)0

, - . -• ',

4..U) 0o 1

- . " C C._ -"

2.. U) C 0
0 1E (D0 0a U, E O
o 0 a) a) , .-.

0-0 i 4-_

U) E 0 0 C4.0 5.

•0 . 0 '0 •.,_ ,-

4-a 0 6Eg 420*i~* 0 _

oC o 0),- • -•

-0 >1 3<-0 a)

.c~ 0 .- W-~ a) . c o
4o" E ~ a) co~C U

U._ C . . 0..-o Coo0

,o -=-• -c 0 > Io

'( Co 0 .- o co U) 5a) 0 0 -a 4-- E 0

0_ E0 (a 3c -S

"- "• - .,-• I
-- *-" > I

t5 U CL 0 DU) w~f 4- E

E-. :5x • u) E" "' '-

CU Co -0 J"

0 U) * I- - C a) c U)A

oo) -C >wo 0/
0 0a) -W- - " -" •

a(D cCD w a) o C - NC a--

a) 0 0u _ o U)D
~0 E C M-0

a)=( 0Co c Ek. n- C E a)
E- 0 oo- U) C 0  w

C-O0 (0 00 -
-o ( D ' a)

a)E ': 4) C 0 to CL u ( (
C a -C E

E - Sl (a) 0a) c C20)-o" (

oi ut 0 n -1 C ) 900> c m 
0

C/

c 00 5 CD U 7 a) 0 C .C.-a
00) 0 Cr_-

Z .C En u) a) C Q~.
E n .) C:a)E oDr-0ac :0 a)-. C- . 6~

~~~ CD4 o~
0 V (D-U 0u Ex 0~ U CD

,00 c
Ca M E) vi'0x40 ~ 0 ~" a)C 0 .'t) 0 =3 cC E. (n

a)cc) = ~ U v ~- n a) _C oý
C~£0 0 0 n 0

t5a) Q-E>4 (

CE 2) nc ' - U) -8 0 0 C(U. c
0C 0- cc 4)

CDU) 0~ 0 a) nn~~V ~

0 "~ E-a 0 . *n 00 COCaUE)C) a - *;_

q) E a)==' 0 0 4)

ca a)o *t X-. U) 0

00

01 72 t5(a0a
322:

:3 4)C 411
/o

a
/ 0 0 a).-

4) 1 co

Clu 0 1ý a 0i C

"(, CD

S-)4~ :3.iEII-0

.000

c~ ~Ž >. ~U) (3)
F-c CU'

E a) 0~ 0 E
-o 0) C co E

-0 a) 0E l 0

*(n C 0 a) 0 0 Y

08 0~0U) >0. to~C -4-. O
-0 1- 4- z 0

-0 0 CL 0 CD)~ M

W) C (m a)U) 0.

"~ 0-oa C~ (Da)

0 0-- (a W~0 -

0 ~ -0 0 30 7'ga

-0 SC (o) U>_L

C:.4- ()C -0 ~ 0.- 0- 0

a ts 0 Eg 0.

U) Cl M 0 2E (a). 0

ca E = :3 U) (D

* c0U r3 cO I m
a) 00 -

c) U) *5c 04-' a) a-c
-0 0 3:: 04 D .- C- L-'- (D o

cL- U)D
C: U) (- -) g) LU) W

M 0. C 0- 0c0 0

o- 0a a) 0 00 Co - a) a) 4) >%
0 ~ ~ a)~ 4-~) 46 a- 2 c C:* iu z

U)s CL a) t: ý U)d 0 Ic CD0)4 U)5
(0 00 o -1.cUd Eo E--I-o c2-6) c~-r 02 0 D)M. W 6 -c

(0.¶~~~t (a6 W 0 * 0)* U.-C)0 M~U0,c~ oCc 0 E -

0 CL0
(0 co 0

E, E
00 0.

LM-
_

_

a) (cn

- Ii lii I

(I)
cis~JL

I=~

oE 'o

0 c0

r CM

0 4)

0 1.01
__ 101

irmI I

c 1 101

II I i
z------------IE

.LCI 0l"C)c C. .

-C .C 0.- om- *Q(0

to~ 'a 00) m:
-; c Mov- no4 -at a h-C

10t 5 E9 uC C. :E4)
0 0 02 3: 0 C

oL _a n. r-) 0)

0* a) 0 4C) 0r r Cý 0 c

o5 U) o~ o rCEN
4) W. (A E ~ o d a CD

.0 w 004 0. 0 4)

C) 0(D

0 40 (D~ t 0o . .- L o0 U) 4) w
4)U Q U~) O _l =:a2 75 0) cC w

0- (v c) : -
4) ~ ~~ ~ ~ ~ c -0c:x.3o

CIIC4)64 C~o 0g. 5 (n O ,

E* 00 Z c =v* -0 0 0 c . 0 C2U.

__~~~ 0a.. 'a~~E ~ -- 0

c ~ 0m Q ~ o C00Ow0 -z E
.5).c ~ ~~ ~ ~ ~ 4) aC)ccCSU2 0 0 w C

coŽ 0v~ - 2 MOL, 0~ _6 0 0 C
Zr-~~ -0. Eo :E(** ct

00 30 0- w 4

(D - = x 02 co 1m cE I -1 c 0

L-. W O0 ý. -W C) -a
C 0o:): C. 0U C: = 0 a .
-04CU-.M CD~ E c 0 ro 0Z CLc c 0~

C0 0 0 0C- EE~ 0) cf4
,o OES CLO 00~

(aaE 0 E- o ro = 0 C - -~ --- A 00 ~C 0 U) -80 .
0.. 4--0 4o-)o - 0 E 4) U)

r0 L 0 a- CL ~ .C (D(D 0 0M>.- o E ca 0 .C0 0

Z~ 0E CC E (D ~
00a) o~ a) E- or *

~~=I-4- ECO- Eo E~.C C ti o
C *.- CO

c-) E~ Co0
0Co <0. U.cl oh

02
COR

t!16,

4)~

cn~

0~S

0.0
C',S

a,) 0)

- 00

0)0
P0) CL a,

o 17 W 0 to.

C) C.~ 4)0cc
A2o .2a

. a) 0 ~ 6.

L- 0C- C Da

E 0 0
U) CD (D (f C

0.. 0. cm, 0 0) 7

(Da) C0 - -

-c c

0a a)

16 " U .- 0 C. 0 a
aO a~ CL EE a) S

(>. - a, Cý4) C 0(

jE a ai0=faC 0)
S -0 -0 (. 0

a) , 00) c 0> C3
O.Cc 0 C0
Co : 0 o mc E)

>, E 0

CD 0C' 0)

_a 0
CM0 (a a ,(D C a) C'. a,) 0
cCr .2 c C-o w -a

(D a,) EV Eo)a,
q-c CD _

Sw CL) a) ~ a

-. 0O0 C
E -. (Dc :3 O _'a a c
S0 04 0,~a r-' C

CD.-0 0C a,0-a)>E
C C wW 4-) (D~0 'aC I

(aCc0 C <0~ orZ- w E %
0 -040

Zf 0- a,. E * aa Z
0 .0-ca :5 U L - - C(DOL- - 6

4.
U-

05
E "CEL 0.2 01- 0-

a)(/ E

cc M- "0 c o C

i =

I 8'

LM %%W W EE 0)f c c 0ca C 0 "

Overview of Megaprogrammiiig Course: Unit 4, Domain Engineering. Workbook

UNIT 4: DOMAIN ENGINEERING

SUMMARY

Domain engineers are responsible for building what the application engineers need to develop
solutions. This includes:

0 Defining what is in the domain

* Defining the process that the application engineer will follow

0 Developing process support (including reusable components) that the application engineer
will use to state the problem, validate it, and generate the solution

Step 1: Step2:
Precisely Generate

State
Problem Solution

This is the "black box"
support that the domain
engineers create for the
application engineers.

Process Support

DEFINING THE DOMAIN

Domain engineers decide what is in a domain.

Application engineers create individual systems. Domain engineers decide the range of systems
application engineers can create.

Deciding what is in a domain involves studying the factors that constrain the problems and solutions
which form the domain and deciding what problems and solutions are important.

Once the domain engineers know the problems that will be in the domain, they can study them and
uncover:

"* The commonalities among all problems

"* The differences between instances of problems

DEFINING THE PROCESS

An application engineer needs to know what steps to follow in order to develop a solution.

Overview of Megapeogramming Course: Unit 4. Domain Engineering, Workbook

Domain engineers define the process for generating a solution in the domain and develop process
support programs to help the application engineer. These support programs include:

"* Support for defining and validating the requirements for the solution

"* Support for generating the solution

ARCHITECTURES

Every software solution is composed of components (e.g., procedures and functions). Every software
solution has an architecture, which defines how the components work together.

Domain engineers create a "domain architecture" that:

"• Defines the complete set of components used by all solutions in the domain

"• Shows what components and interrelationships all solutions have in common

"* Shows how individual solutions differ.

The following figure shows the domain architecture for the robot domain.

SPerformMission

Navigate -I-fitri- 1 ------NaiatF Return to I _Turn off .

Terrain I Point of O rigin

I Negotiate I
I Obstacle I

Navigate avigate
.Handle Object ITerrain Terrain

Key:

I--- Always present -I Sometimes present

-. X calls Y in all programs

--- po. X calls Y In some programs

Domain engineers create these components. They also identify which components are common to all
solutions in the domain and which are needed to solve specific problems.

2

Overview of Megaprogramming Course: Unit 4. Ionmin Engineering. Workbook

UNIT 4: DOMAIN ENGINEERING

IN-CLASS DISCUSSION

Compare results of the laboratory activity. Is there more than one robot software architecture
that satisfies the needs of each client? Why or why not?

2. What other kinds of robots could be produced by the URW, domain?

HOMEWORK

1. Considering the domain of the URW, would you, as Chairman of the Board, want to produce
robots to:

a. Plant corn

b. Pick water lilies

c. Feed incubator babies

In making your decision, are there enough similarities to warrant asking your domain
engineers to write additional instructions?

2. The instructions in the left column were used to implement the software for a robot that
searches a tundra for lost hikers. Each instruction in the left column is an adaptation of an
architectural part in the right column. Match each instruction in the left column with the
architectural part in the right column.

Instructions Architectural Parts

1. Advance-north-moving-east-to-avoid-rocks- A. Perform Mission
returning-when-bag-full B. Navigate Terrain

C. Negotiate Obstacle
Move north one unit. If a rock blocks the D. Handle Object
path, move east around it. If a hiker is E. Terminate Mission
found, pick him or her up; if doing so brings
the robot to its full capacity, quit this instruction.

2. Advance-north-moving-west-to-avoid-rocks-
returning-when-bag-full

Same as Instruction 1, except that if a rock blocks
the path, move west around it.

3. Sweep-east-returning-when-bag-full

Move in a straight eastward line from the
current position to the eastern boundary of
the area to be searched. If a hiker is found,

3

Overview of Megaprogramming Course: Uitit 4. Domain Engineering, Workbook

pick him or her up; if doing so brings the robot
to its full capacity, quit this instruction.

4. Sweep-west-returning-when-bag-full

Same as Instruction 3, except move in a straight
westward line from the current position to the

western boundary of the area to be searched.

5. Sweep-south

Move in a straight southward line from the
current position to the southern boundary of

the area to be searched. Ignore any hikers.

6. Sweep-west

Same as Instruction 5, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

7. Pick-up-any-objects

Pick up as many hikers at the current location as
the capacity of the robot allows.

8. Return-when-bag-full

Search tundra, looking for hikers. When the

robot's capacity of hikers has been picked up, or
when the entire tundra has been searched,
return to the point of origin and turn off.

9. Return-to-starting-point

From the current position, return to the point of
origin.

10. Negotiate-rock-to-east-returning-when-bag-full

Assumes that there is a rock just ahead of the
robot, to the east. Moves the robot such that,
when the instruction ends, the robot is just to

the east of the rock, at the same latitude as when
it started. If any hikers are found while
negotiating the rock, they are picked up. If
doing so brings the robot to its capacity, the

instruction terminates, whether or not the rock
has been negotiated.

4

Overview of Megaprogramming Course: Unit 4. Domain Engineering. Workbook

11. Negotiate-rock-to-west-ret urning-when-bag-full

Same as Instruction 10, except assumes that
there is a rock just ahead of the robot, to the
west. Moves the robot such that, wh,:n the
instruction ends, the robot is just to the west of
the rock, at the same latitude as when it started.

12. Zig-zag-southwest

From the current position, zigzag southwest
until reaching the southern or western
boundary of the area being searched, whichever
occurs first. Ignore any hikers.

3. URW, has been approached by the U. S. State Department. The State Department is
concerned because it has received reports that embassies around the world have electronic
bugs embedded in their walls. The State Department wants to know if UJRW can supply a robot
that can locate these bugs. Fortunately, URW's engineers have just finished developing a new
sensor, and they think it can be used for finding bugs. URW therefore decides to modify its
robot domain so it can produce this new type of robot in addition to those in its old product
line.

a. For each of the following decisions in the decision-making process, state a
requirement for the robot:

(1) Terrain

(2) Object type

(3) Choose if objects are to be carried

(4) Ending position

(5) Carrying capacity

b. Identify the decisions from (1) through (5) whose range of allowed values must be
changed to accommodate the new robot.

(Optional)

c. Draw the software architecture for the robot, using the domain architecture as a
starting point.

d. Name some instructions from Question 2 that you think could be used without
modification.

e. Name some instructions from Question 2 that could be used with modification. What
do you think the modifications might be?

f. As a domain engineer for URW, what new components, if any, do you think would be
necessary?

5

Overview of Megaprogramming Course: Unit 4, Domain Engineering& Workbook

This page intentionally left blank

6

Overview of Megaprogramming Course: Unit 4, Domain Engineering. Workbook

UNIT 4: DOMAIN ENGINEERING

TEACHER NOTES FOR IN-CLASS DISCUSSION

1. Compare results of the laboratory activity. Is there more than one robot software architecture
that satisfies the needs of each client? Why or why not?

2. What other kinds of robots could be produced by the URW domain? This is really an
open-ended question and should produce an interesting discussion.

TEACHER NOTES FOR HOMEWORK

1. Considering the domain of the URW, would you, as Chairman of the Board, want to produce
robots to:

a. Plant corn

b. Pick water lilies

c. Feed incubator babies

In making your decision, are there enough similarities to warrant asking your domain
engineers to write additional instructions?

Note to teachers.- Familiarity with Karel the Robot is helpful on the following questions.

2. The instructions in the left column were used to implement the software for a robot that
searches a tundra for lost hikers. Each instruction in the left column is an adaptation of an
architectural part in the right column. Match each instruction in the left column with the
architectural part in the right column.

Instructions Architectural Par

1. Advance-north-moving-east-to-avoid-rocks- A. Perform Mission
returning-when-bag-full B. Navigate Terrain

C. Negotiate Obstacle
Move north one unit. If a rock blocks the D. Handle Object
path, move east around it. If a hiker is E. Terminate Mission
found, pick him or her up; if doing so brings
the robot to its full capacity, quit this instruction.

2. Advance-north-moving-west-to-avoid-rocks-
returning-when-bag-full

Same as Instruction 1, except that if a rock
blocks the path, move west around it.

7

Overview of Megaprogrmming Course: Unit 4, Domain Engincering, Workbook

3. Sweep-east-returning-when-bag-full

Move in a straight eastward line from the

current position to the eastern boundary of the
area to be searched. If a hiker is found, pick him
or her up; if doing so brings the robot to its full
capacity, quit this instruction.

4. Sweep-west-returning-when-bag-full

Same as Instruction 3, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

5. Sweep-south

Move in a straight southward line from the
current position to the southern boundary of
the area to be searched. Ignore any hikers.

6. Sweep-west

Same as Instruction 5, except move in a straight
westward line from the current position to the
western boundary of the area to be searched.

7. Pick-up-any-objects

Pick up as many hikers at the current location as
the capacity of the robot allows.

8. Return-when-bag-full

Search tundra, looking for hikers. When the
robot's capacity of hikers has been picked up, or
when the entire tundra has been searched,
return to the point of origin and turn off.

9. Return-to-starting-point

From the current position, return to the point of
origin.

10. Negotiate-rock-to-east-returning-when-bag-full

Assumes that there is a rock just ahead of the
robot, to the east. Moves the robot such that,
when the instruction ends, the robot is just to
the east of the rock, at the same latitude as when
it started. If any hikers are found while
negotiating the rock, they are picked up. If

8

Overview of Megaprogramming Course: Unit 4, Domain Engineering, Workbook

doing so brings the robot to its capacity, the
instruction terminates, whether or not the rock
has been negotiated.

11. Negotiate-rock-to-west-returning-when-bag-full

Same as Instruction 10, except assumes that
there is a rock just ahead of the robot, to the
west. Moves the robot such that, when the
instruction ends, the robot is just to the west of
the rock, at the same latitude as when it started.

12. Zig-zag-southwest

From the current position, zigzag southwest
until reaching the southern or western
boundary of the area being searched, whichever
occurs first. Ignore any hikers.

Answers: 1-B, 2-B, 3-B, 4-B, 5-B, 6-B, 7-D, 8-A, 9-E, 10-C, 11-C, 12-B

3. URW has been approached by the U. S. State Department. The State Department is
concerned because it has received reports that embassies around the world have electronic
bugs embedded in their walls. The State Department wants to know if URW can supply a robot
that can locate these bugs. Fortunately, URW's engineers have just finished developing a new
sensor, and they think it can be used for finding bugs. URW therefore decides to modify its
robot domain so it can produce this new type of robot in addition to those in its old product
line.

a. For each of the following decisions in the decision-making process, state a
requirement for the robot:

(1) Terrain

Answer: The robot is to search buildings.

(2) Object type

Answer: The robot is to search for electronic bugs.

(3) Choose if objects are to be carried

Answer: The robot is to locate objects, but not cany them.

(4) Ending position

Valid answers: The robot is to stop when it locates a bug; the robot is to signal the location
of each bug it finds; and continue until it has covered all of the building; or both. That is,
URW should consider supplying both types of robots.

9

Overview of Mcgppmirammiag Couiw: Unit 4. Domain EngineerinL Wkboxk

(5) Carrying capacity

Answer.- The robot will not carry any objects.

b. Identify the decisions from (1) through (5) whose range of allowed values must be
changed to accommodate the new robot.

Answer: (1) - new terrain (buildings)
(2) - new object type (bugs)

(Optional)

c. Draw the software architecture for the robot, using the domain architecture
starting point.

Answer: Draw the architecture with particular nuances based on how the robot terninatc•
its mission.

d. Name some instructions from Question 2 that you think could be used without
modification.

e. Name some instructions from Question 2 that could be used with modification. What
do you think the modifications might be?

f. As a domain engineer for URW, what new components, if any, do you think would be
necessary?

Answer: The old search strategies do not work, however, realizing that is not simple.

10

Overview of Megaprograrnming Cours: "Ist and Survey

Test for Overview of Megaprogramming Course

1. In the following table, check whether the task would be done by an application engineer or a
domain engineer.

Application Domain
Task Engineer Engineer

Create the reusable components for a domain.

Work with the customer to understand the problem.

Validate the requirements.

Generate the solution.

Define what is in the domain.

Define the process and support needed to generate a
solution for a customer.
Precisely state the problem.

2. Read the following description of the Car4U Company:

Have you ever wanted a car that was taller? wider? bigger? Have you ever shopped the car
market and found nothing you wanted (and they still wanted a lot of money for It)? Well, no
more, because now there's a new company for the discriminating buyer:

Do We Have a Car 4 U!

The Car4U Company makes cars that are tailored to your every need and desire. You can
have car seats that are tailored to your weight, height, and width. You can have bigger
windows or smaller windows. You can have bigger trunks or smaller trunks. If you want
four-wheel drive, you've got it. If you want your car to be a shade of blue that matches your
eyes, we can do that too (in fact, we have over 1000 colors to choose from!). We have engines
meant for cruising at high speeds and engines meant for climbing mountains. All in all,
Car4U has over 3 dozen options. Each one Is meant to help make your car truly your own.

We work with every customer to determine exactly what they want and then develop a car
that suits their needs. No longer will you have to wait for the perfect car. Stop by your nearest
Car4U store today and see what we can do for you!

Based on this description, answer the following questions. Attach separate sheets if needed.

a. What is the output of the Car4U Company's domain engineering activities?

b. What is the output of their application engineering activities?

11

Overview of Megaprogramming Course: Test and Survey

3. Read the following description of Ti's cash registers domain.

Description of UJ's Cash Registers Domain

TJ's Cash Registers domain contains cash registers that can be used in just about any retail
situation.

There are several options through which money can be entered into a cash register. The
traditional way Is to accept cash from the customer and store it in a removable money
drawer. In addition to the money drawer, some cash registers are equipped with check
Imprinting services and/or the ability to scan in credit cards. In all cases, each cash register
keeps track of the amount of money that has been received from the customer.

Several retail situations require the use of programmable keys thatcan store prices for items
that are sold frequently. Other price input mechanisms include a price scanning function, a
scale for Items sold by weight, or the use of the numeric key pad. Only the numeric key pad
and the programmable keys are standard, though the number of programmable keys can
vary from register to register.

To show prices and to show other information for the cashier and the customer, each cash
register has a digital display. Optionally, there may be a separate price display for the
customer, either on the back of the register or on a completely separate, smaller display that
is above the register and pointed towards the customer. After every transaction, each
register automatically outputs a cash register receipt that is printed with the date and time.

Higher-end cash registers can be hooked up to the store's Inventory system to either keep
track of what the store has in stock (along with a warning message when the stock gets low)
or to order Items and have the customer pick them up at a separate location.

Based on this domain description, answer the following questions. Attach separate sheets if needed.

a. What are the members of the domain?

b. List the similarities between the members of the domain. Be specific.

c. List the differences between the members of the domain. Be specific.

12

Ovem•ew of Mcgaprogarnming Course: Test and Survey

Survey for Overview of Megaprogramming Course

Please answer the following questions. The company that developed the course material will use this
information to improve the course.

1. Do you feel that you understand the basic principles of megaprogramming after taking this
course?

2. Do you see value in megaprogramming?

3. Would you like to learn more?

4. What activity(ies) or example(s) was most helpful to you in understanding megaprogramming?

5. Do you have any other suggestions for how the course can be improved?

13

Overvitw of Megaprogramnming Course: Test and Survey

This page intentionally left blank.

14

o.vcrvww of Mefprlopamminz Coi•,c: i61 "d Su :

Test for Overview of Megaprogramming Course

Teacher Answers

1. In the following table, check whether the task would be done by an application engineer or a
domain engineer.

Task Application Domain

Engineer Engineer

Create the reusable components for a domain. X
Work with the customer to understand the problem. X

Validate the requirements. X

Generate the solution. X
Define what is in the domain. X

Define the process and support needed to generate a X
solution for a customer.

Precisely state the problem. X

2. Read the following des&iption of the Car4U Company:

Have you ever wanted a car that was taller? wider? bigger? Have you ever shopped the car
market and found nothing you wanted (and they still wanted a lot of money for It)? Well, no
more, because now there's a new company for the discriminating buyer:

Do We Have a Car 4 U!

The Car4U Company makes cars that are tailored to your every need and desire. You can
have car seats that are tailored to your weight, height, and width. You can have bigger
windows or smaller windows. You can have bigger trunks or smaller trunks. If you want
four-wheel drive, you've got It. If you want your car to be a shade of blue that matches your
eyes, we can do that too (in fact, we have over 1000 colors to choose from!). We have engines
meant for cruising at high speeds and engines meant for climbing mountains. All in all,
Car4U has over 3 dozen options. Each one Is meant to help make your car truly your own.

We work with every customer to determine exactly what they want and then develop a car
that suits their needs. No longer will you have to wait for the perfect car. Stop by your nearest
Car4U store today and see what we can do for you!

Based on this description, answer the following questions. Attach separate sheets if needed.

15

Overview of Megaprogranmming Course: Test and Survey

a. What is the output of the Car4U Company's domain engineering activities?

Domain engineering would (1) create all of the different car components that would be
needed to make a car, (2) create the ordered list of questions that the car salesperson would
ask the customer, and (3) create the instructions for how the actual car builders would put
together the car based on the specific needs of a specific customer.

b. What is the output of their application engineering activities?

Application engineering would (1) talk with the customerto understand what the customer
wanted in a car, (2) use that understanding to come up with a precise statement of what
was needed in the car, (3) make sure that this precise statement was what the customer
wanted, and (4) generate the car (with help from the actual car builders) that met the
customer's specific need.

3. Read the following description of TJ's cash registers domain.

Description of TJ's Cash Registers Domain

TJ Inc. makes cash registers that can be used in just about any retail situation.

There are several options through which money can be entered into a cash register. The
traditional way is to accept cash from the customer and store It in a removable money
drawer. In addition to the money drawer, some cash registers are equipped with check
imprinting services and/or the ability to scan In credit cards. in ail cases, each cash register
keeps track of the amount of money that has been received from the customer.

Several retail situations require the use of programmable keys that can store prices for items
that are sold frequently. Other price Input mechanisms include a price scanning function, a
scale for items sold by weight, or the use of the numeric key pad. Only the numeric key pad
and the programmable keys are standard, though the number of programmable keys can
vary from register to register.

To show prices and to show other Information for the cashier and the customer, each cash
register has a digital display. Optionally, there may be a separate price display for the
customer, either on the back of the register or on a completely separate, smaller display that
is above the register and pointed towards the customer. After every transaction, each
register automatically outputs a cash register receipt that is printed with the date and time.

Higher-end cash registers can be hooked up to the store's Inventory system to either keep
track of what the store has in stock (along with a warning message when the stock gets low)
or to order items and have the customer pick them up at a separate location.

Based on this domain description, answer the following questions. Attach separate sheets if needed.

16

Overview of Mesaprogramming Course: Test and Survey

a. What are the members of the domain?

The members of TJ's Cash Registers domain are cash registers that could be built by TJ Inc.

b. List the similarities between the members of the domain. Be specific.

(1) Removable money drawer
(2) Ability to keep track of the amount of money received by customers
(3) Numeric keypad

(4) Existence of programmable keys
(5) Digital display
(6) Ability to output a cash register receipt

c. List the differences between the members of the domain. Be specific.

(1) Check imprinting services
(2) Ability to scan in credit cards
(3) Price scanning function

(4) Scale for items sold by weight
(5) Number of programmable keys
(6) Price display on back of register
(7) Separate price display pointed towards the customer
(8) Hook-up to store's inventory system to keep track of what's in stock
(9) Hook-up to store's inventory system to order items to be picked up at separate location

Survey for Overview of Megaprogramming Course

Teacher Answers

There are no right or wrong answers on this section. A suggestion for this survey would be to hand it
to the students after they have completed the test and give them extra credit if they fill it out and hand

it in the next day.

17

overview of Megaprogramming Course: Test and Survey

This page intentionally left blank.

18

CO)

0 . -0

"Co 0)0

0 0)

E -) -

cc -0 c~ C
0ra) a

00%
Ua)

0.0

424

Teacher Notes
for

Overview of Megaprogramming
Course

SPC-94044-CMC
Version 01.00.03

September 1994

Teacher Notes
for

Overview of Megaprogramming
Course

SPC-94044-CMC

Version 01.00.03

September 1994

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Cperight 0 1994, Software Prxti"y Consoctiun Sevices Qtoratksn Herndkm, Vxrgin ss P to use, oopy, nuodiy, and
dishitate this material for any purp•esand without fee is hereby grantedconsitentwith48 (FR 227 and 252, and provided that the
above oVpright notice appears in an oopies amd that both this copyright notice and this permissin notice appear in siuppomng doc-
ne This material is based in part upon work sponsored by the Advanced Research Projecs Agency under Grant
#MDA972-92-J-1018. The oltent does not necessarily reflect the postion orthe policyo the U.S.Govrnet, and no offiial en-
dorswmnt should be inferred. The nae Software Pkoducivity Caoortia= shall not be used in aderti•i or publ pertainmg to
this material or other without the prior written pesmraion of Sofware Productivit sortium, Inc. SOFTWARE PRODUC-
TIVITY CONSORTIUM, lNC AND SOFTWARE PRODUC1IVITY CONSORTIUM SERVICES CORPORATION MAKE
NO REPRESEN ATONS OR WARRANTIES ABOUFT HE SUITABILUIT OFTIHIS MATERIALFORANY PURPOSE OP.
ABOUTANY OTHER MATIER, AND THIS MATERIAL IS PROVIDED WIT-HOUr EXPRESS OR IMPLIED WARRAN-
TY OF ANY KIND.

I

DOS and Visual Basic are registered trademarks of Microsoft Corporation.

HyperCard is a trademark of Apple Computer, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

Software through Pictures is a trademark of Interactive Development Environments, Inc.

StateMate is a trademark of i-Logix, Inc.

X Wimdow System is a trademark of the Massachusetts Institute of Technology.

CONTENTS

PREFACE .. vil

ACKNOWLEDGMENTS ... ix

1. INTRODUCTION ... 1

1.1 Overview of the Current Computer Science Curriculum 2

1.2 Definition of Terms .. 3

1.3 Problems With the Current Curriculum 4

1.4 The Megaprogramming Curriculum Project 4

1.5 Purpose of This report .. 5

1.6 Audience for This Report ... 5

1.7 Organization of This Paper .. 5

1.8 Typographic Conventions ... 6

2. SOFTWARE DEVELOPMENT IN INDUSTRY TODAY 7

2.1 Examples of Software Projects ... 7

2.1.1 A Contractual Software Development Scenario 9

2.1.2 A Commercial Software Development Scenario 12

2.2 Problems With Software Development .. 13

2.3 Success Stories in Software Development 15

2.3.1 Programming Languages and Productivity 16

2.3.2 Spreadsheets ... 16

2.3.3 User Interface Generators .. 17

2.3.4 Rapid Prototyping ... 19

iUl

Contents

3. AN OVERVIEW OF ARPA'S MEGAPROGRAMMING EFFORT 21

4. MORE ON MEGAPROGRAMMING 25

4.1 D om ains ... 25

4.1.1 Concepts of Domains .. 25

4.1.2 Influence of Domain on Software Development 27

4.2 Definition of Megaprogramming ... 29

4.2.1 A Megaprogramming Scenario .. 29

4.2.2 What Is Megaprogramming? 32

4.2.3 Perspectives on Megaprogramming 33

4.3 Benefits of Practicing Megaprogramming 34

5. THE NEED FOR MEGAPROGRAMMING IN HIGH SCHOOLS
AND UNIVERSITIES .. 35

5.1 The Current Curriculum: Strengths and Weaknesses 35

5.2 Benefits of Megaprogramming for Students 37

5.3 W hy in the First Course? 38

5.4 Benefits of Teaching the Overview of Megaprogramming Course 38

APPENDIX A. RELATION OF LECTURE SLIDES TO THIS REPORT 41

APPENDIX B. STRUCTURE OF THE OVERVIEW OF MEGAPROGRAMMING
COURSE ... 43

B.1 Unit 1: Software Development ... 43

B.2 Unit 2: Concepts of Megaprogramming 43

B.3 Unit 3: Application Engineering ... 43

B.4 Unit 4: Domain Engineering .. 44

LIST OF ABBREVIATIONS AND ACRONYMS 45

REFERENCES .. 47

iv

FIGURES

Figure 1. The Current Curriculum Model for Teaching Computing 2

Figure 2. Software Development Process ... 8

Figure 3. Sample Software Requirements Specification Table of Contents 10

Figure 4. Activities of Software Design .. 11

Figure 5. A Pictorial Representation of an Application's Interface Requirements 18

Figure 6. Relationship of Market to Domain ... 27

Figure 7. The Domain Engineering Process .. 31

.

TABLES

Table 1. Mapping of Slides to Sections in This Report 41

vi

I

PREFACE

The Software Productivity Consortium (Consortium) is a consortium of aerospace companies that
employ many of today and tomorrow's software developers. These industries have a strong interest
in the quality of the software education today'syouth receive, for a well-trained engineer is avaluable
asset. The Consortium has therefore begun an ambitious program to infuse modern software develop-
ment concepts into the computing curriculum. This program, run by the Megaprogramming Curricu-
lum Project, is working with high schools and universities to devise new and innovative curricula and
supporting materials.

The project's first product is the Overview ofMegaprogramming Course. As of this writing, high schools
in Virginia and West Virginia have incorporated the course into their school year. Based on reactions
from those schools, the Consortium believes that the course provides an excellent introduction to me-
gaprogramming (a foundation for many important software concepts, as the report will explain) and
is useful to teachers who wish to keep their computer science courses in step with the state of the art.

The Consortium's original model for introducing the course at a high school was to provide personal
instruction and consultation for teachers who expressed an interest in it. This approach is becoming
impractical as use of the course expands. In any event, even one-on-one instruction runs the risk of
omitting information. Hence this report, which captures the concepts covered during a typical tutorial
session. It is not entirely a substitute for face-to-face contact, but it should help the reader understand
megaprogramming. Moreover, it should convince the reader of the need for teaching the course.

The theme of this paper is that education in software development has for too long stressed
programming and computer science at the expense of engineering. Industry wants software engineers,
not computer scientists. Yet software engineering is still an optional course for most undergraduate
computer science majors and is seldom, if ever, mentioned in high schools. lb be sure, teaching
engineering requires a scientificbasis, and developing software is ultimately about programming; both
topics are important. But to stress them at the expense of software engineering keeps the student from
learning the full truth about why industry considers developing software to be so hard.

The Megaprogramming Curriculum Project hopes educators will agree that megaprogramming
deserves a place in a student's education. To the degree that it can, the project actively seeks to work
with schools in instituting megaprogramming, in soliciting feedback on the course, and in helping
instructors revise and expand the megaprogramming curriculum material.

vii

Preface

This page intentionally left blank

v.

ACKNOWLEDGMENTS

Steve Wartik is the principal author of this report. Thoughtful reviews by Bob Christopher, Mary
Eward, Mary Johnson, and Jim Kirby have corrected everything from typographical twiddles to
significant conceptual mistakes. Wartik's ideas have been rendered readable through Bobbie TIoy's
expert technical editing skills. Deborah Tipeni's painstaking word processing and clean proofing
enhanced the overall quality of the document.

ix

Acknowledgrents

This page intentionally left blank.

1. INTRODUCTION

This report is part of the Software Productivity Consortium s Overview of Megaprogramming Course.
The course, aimed at high school and freshman undergraduate computer science students, teaches
industrial software development concepts. It gives students a realistic look at how professionals build
software. It covers important, practical issues often absent from today's classes. Although the course
is brief (1 to 2 weeks), it helps students relate their programming knowledge to the real world.

The Overview of Megaprogramming Course focuses on software developed by the technique known as
megaprogramming. The megaprogramming technique is very different from how most companies
(and students) develop software today. Students develop a single program in response to a homework
assignment; a company develops a single program in response to a business opportunity. By contrast,
people using megaprogramming develop a whole product line-that is, a set of programs. In doing
so, they use sound engineering principles that give them a solid understanding of each program's prop-
erties. This understanding may not help a company as it pursues a single business opportunity, but
companies seldom pursue single opportunities; theygo after sets of opportunities. Megaprogramming
helps companies position themselves to obtain sets of opportunities. As this report will argue, it can
also be helpful to students.

The development of the megaprogramming technique has been sponsored by the Advanced Research
Projects Agency (ARPA) to help increase software's quality and decrease its cost (Boehm and Scherlis
1992). If megaprogramming is widely adopted, it will have a profound influence on how people build
software. The difference will be as dramatic as when people first switched from assembly languages
to FORTRAN or Pascal.

This report provides an introduction to megaprogramming. It is intended for anyone wanting to learn
enough about megaprogramming to teach the Overview ofMegaprogramming Course. It is one part of
the materials distributed with the course and is best read in conjunction with the other materials. It
does not assume familiaritywith them, but it references the lecture notes, slides, and laboratory mate-
rial. This may prove helpful to an instructor preparing lectures: a reference to a slide (e.g., "See
Slide 1-4") generally indicates additional material that can be discussed when presenting that slide.
Also, for each slide, Appendix A shows the material in this report most relevant to that slide.

This report is not to be viewed as a complete definition of megaprogramming. Rather, it presents
megaprogramming's fundamental concepts and shows why these concepts are important in software
development.

Moreover, this report argues that megaprogramming should be a basic part of a student's education
in computing. The Overview of Megaprogramming Course is a first step in this direction. The course was
created based on the belief that the computing curriculum has several significant deficiencies. The
next several sections (1.1 through 1.3) address this point.

1. Introduction

1.1 OVERVIEW OF THE CURRENT COMPUTER SCIENCE CURRICULUM

As of this writing, computer science education is a little over three decades old.) Those years have seen
considerable change in how people develop software. Once it was largely an individuai or small team
activity that generally yielded programs of under 50,000 lines of code-small in today's terms. This
is no longer the case. Advances in hardware have resulted in huge increases in available memory
which, in turn, have led to larger programs. Today, large organizations routinely write programs
containing millions of lines of code. They spend several years doing so and set up a complex hierarchy
to build and maintain their products. Individuals and small teams still exist, but they work in ways that
were inconceivable 30 years ago. They rely on a complicated software infrastructure of compilers,
operating systems, editors, graphics libraries, and the like.

Computer science education has changed little in this period. The standard computer science
curriculum, now and then, begins by introducing students to programming. Students learn the syntax
and semantics of a computer programming language such as Pascal or Ada and are taught some
rudimentary concepts of formulating algorithms to solve problems and verifying these algorithms by
creating and executing test cases. They apply this knowledge to formulate algorithms in some
high-level programming language, which they then compile, execute, and test. This fills up one course;
subsequent courses introduce such topics as the science of algorithm analysis, the design and
impiementation of operating systems, or-often only in a student's final undergraduate year-a
discussion of software engineering, that is, how professionals build software.

This curriculum model, shown in Figure 1, makes students reasonably adept at solving simple
problems after only one course. This is commendable, but it has two significant disadvantages:

" It introduces students to software dewlopment before teaching them any science they might use to
analyze the quality of their software. Real software must do more than simply compute the right
answer. It must execute efficiently. Its interface must be friendly to its users. It must integrate
smoothly with the system of which it is a part. Other people must be able to understand it. In
the hard sciences, such as chemistry or physics, students immediately learn quantitative
analysis techniques to address issues analogous to these. Quantitative and qualitative analysis
techniques exist for software, but students seldom learn them in their first course. As a result,
students learn to see software development as an art or craft, whereas it should be an
engineering activity-an application of scientific principles.

I PL- rg e m g H Cornputer S eilS fw r

Figure 1. The Current Curriculum Model for Teaching Computing

" The current curriculum model focuses on programming, a very small portion of the software
deweopment process (see Section 2). The programming part is most amenable to concrete
analysis and requires the least abstract thought. However, as Section 1.2 discusses, most
fundamental skills a software developer needs are not part of programming per se. These skills
are not usually taught until the software engineering course. Instead, students learn
workaround techniques that are of questionable value to a professional (Prey, Cohoon, and

1. Purdue University founded the United States' fIrst computer science department in 1962.

2

1. Introduction

Fife 1994). By the time they take a software engineering course, the undesirable techniques
are firmly entrenched in their minds.

1.2 DEFINITION OF TERMS

This report so far has discussed "building" and "developing" software, and might also have included
commonly used words like "create," "produce," and '", rite." Students earn degrees in Computer Sci-
ence. They take courses with titles like Introduction to Programming and Software Engineering. They
use the skills they learn to develop software. What, exactly, is the relationship between all these terms?

Answering this question requires a combination of historical, academic, and industrial perspectives.
Industry's goal is to develop software. Hence, the phrase software development x .ers to the whole
process of creating and rewriting software, starting with the first realization of its need, en through
its first use, and from there through bug fixes and enhancements to the time when it becomes obsolete
and is finally discarded (see Slide 1-4). People use this and words like build, develop, write, and create
interchangeably---although Brooks (1987) reports an epiphany on realizing their distinction. "I still
remember the jolt I felt in 1958 when I first heard a friend talk about building a program, as opposed
to writing one," he writes. "In a flash he broadened my whole view of the software process."

Software development, the previous paragraph claims, is a process. What does this imply? Webster's
Dictionary (Merriam 1977) defines a process as "a series of actions conducted to an end." An orga-
nization can perform a process in many ways; many are chaotic and poorly understood. These are the
bane of an organization, for poorly understood actions are hard to plan and manage. Organizations
want their processes to introduce engineering. In engineering (to paraphrase Webster's), science is
applied to processes to make them useful to humanity. In other words, software development that in-
corporates engineering has a scientific basis. This science helps organizations predict the properties
of software without actually building it-just as a civil engineer uses the science of structural mechan-
ics to predict the load a bridge can hold without actually building it. Similarly, science also helps orga-
nizations create and perform a software process, just as chemistry helps a chemical engineer create
and perform a process to manufacture chemicals.

Software engineering, then, is software development using engineering. The science underlying this
engineering comes in part from computer science. Computer science lets software engineers predict
many important properties of software. For example, algorithm analysis lets them know that sorting
n elements takes time proportional to n Inn. Computer science also provides standard algorithms and
techniques. Backus (1978) reports that writing the first high-level language compiler took 3 years.
Today, thanks to research in areas like formal languages and parsing, students taking a compiler class
learn a well-defined science that lets them complete a compiler in a single semester.

Computer science is not the only science needed in software engineering. Large teams-sometimes
thousands of people-develop software. Managing these teams is a complex social process, and so the
social sciences, notably psychology, have made important contributions to software engineering;
Weinberg (1971) is an excellent example. Business sciences, too, have contributed their share, tailor-
ing management theories to software (Humphrey 1989) and providing models for estimating the costs
of developing software (Boehm 1981).

This broad focus distinguishes software engineering from programming. Programming is usually
taken to mean the parts of software development concerned only with writing and testing programs.
Programming courses do not, as a rule, teach science. Nor do they teach a process of software

3

1. Introduction

development, engineering-based or otherwise. Students who only learn programming may know how
to create programs, but they do not know how to assess them. They also do not appreciate the
multidisciplinary nature of developing software.

In a famous debate at the annual Computer Science Conference (CACM 1989), Edsger Dijkstra
argued that software engineering is not really engineering at all. He claimed computer science is still
too young to provide enough science for software development to be an engineering discipline like
civil or electrical engineering. Even his opponents accepted his opinion, at least in part. They realize
that "software development" more accurately describes what goes on in industry today than does
"software engineering." This, however, does not imply people should avoid teaching what software
science and engineering is known. Moreover, software is developed in response to a problem in some
area such as civil or electrical engineering. The science from these areas can and should be put to use
during software development. Computer science courses stress this point all too infrequently.

1.3 PROBLEMS WITH THE CURRENT CURRICULUM

The discussion in the previous sections leads to the following description of specific problems with the
current curriculum:

" The initial emphasis is on programming, widely regarded as the easiest part of software
development (Ince 1988). Certainly, mastering programming requires grasping many new
language and logic concepts, and is not a trivial activity. But neither are any of the other aspects
of software development, and students deserve to learn about them as well.

" Science and engineering skills are played down. Students spend so much time learning
programming, they forget that programs are written to achieve an end. Professional software
developers, when they build a program, must be facile in areas other than programming. If
they are writing satellite control software, they must understand equations of satellite motion.
If they are writing an accounting package, they must understand business science. The
computing curriculum, by contrast, emphasizes programming and computer science concepts
without asking students to apply other sciences.

" Students are discouragedfrom using existing software. Professionals strive to avoid writing code
if they or someone else have written it before. They try to reuse existing code. Doing so is not
always easy, but the savings in time and effort is often immense. Students do not learn reuse
techniques such as megaprogramming and are often informed that using somebody else's code
is plagiarism. Plagiarism aside, the result is that students must reenter code they have written
before-a time-wasting, rote activity. From a pedagogic perspective, students learn computer
science but not software engineering. They see computer science concepts building on pre-
viously learned computer science concepts (for example, analysis of sorting routine execution
time builds on the science of algorithm analysis), but they do not see engineering concepts
building on other engineering concepts.

1.4 THE MEGAPROGRAMMING CURRICULUM PROJECT

Addressing the problems with the current curriculum is the objective of the Megaprogramming
Curriculum Project. This project, founded in 1992 by the Software Productivity Consortium (the
Consortium), has the long-range goal to create, foster, and encourage curricula for high schools and
universities that include more software engineering.

4

1. Introduction

The project is accomplishing its long-term goals, in part, by creating short courses. Instructors use
these courses as special topics units that introduce students to software engineering concepts.
Teachers also gain knowledge of software engineering. They incorporate this knowledge into their
regular courses. The Megaprogramming Curriculum Project's Overview of Megaprograrnming Course
is a broad overview of modern software engineering.

1.5 PURPOSE OF THIS REPORT

This report serves the following purposes:

"The report complements the lecture notesfor the Overview of Megaprogramming Course. The
notes are organized as slides suitable for making into transparencies; each slide has an accom-
panying page of explanatory notes. This organization, suited to a lecture, necessarily abridges
the notes. This report provides information that could not fit into the notes. Sometimes this
information provides context; while not likely to be incorporated into a lecture, it shows the
importance of megaprogramming in industry and academia. Other times, the information
simply did not fit into the flow of the lecture.

" The report provides instructors with answers to questions perceptive sudents might ask. This
information has often been omitted from the slides because it cannot fit into the format.
Indeed, presenting all of it would result in a course much longer than the anticipated I to 2
weeks. However, instructors will want to be prepared to go into depth on certain topics when
students show interest.

" The report increases awareness of indastrial practices in the educational community. Instructors can
use this knowledge to teach practical aspects of software development, introduce realistic
concerns, and create projects and assignments incorporating more real-world considerations.

" The report assists instructors in preparing their own megaprogramming lectures, examples, and
exercises. The Overview of Megaprogramming Course cannot possibly suit everyone's style. The
Megaprogramming Curriculum Project encourages instructors to develop their own
materials. This has been its model since the very first year, since curriculum propagation on
a nationwide scale is beyond the scope of a single project.

1.6 AUDIENCE FOR THIS REPORT

This report is intended primarily for high school and university instructors who are interested in
teaching the Overview of Megaprogrmnming Course. It is also of interest to anyone who wants to know
about the Megaprogramming Curriculum Project and its tenets. The reader should understand
enough programming and basic computer science concepts to teach an introductory course.

1.7 ORGANIZATION OF THIS PAPER

The material in this report is organized as follows:

• Section 1 contains an overview ofthe current computer science curriculum, definitions of basic
terms, problems in the curriculum, and a description of the Megaprogramming Curriculum
Project and how it addresses those problems.

1. Introduction

" Section 2 discusses a hypothetical software project, intending to present a reasonable picture
of the current state of industrial software development.

" Section 3 discusses the government's concern about the growing costs of software
development, and the Megaprogramming Effort, which is responsible for starting the
Megaprogramming Curriculum Project.

" Section 4 covers megaprogramming in detail: what it is and why practicing it seems likely to
improve the state of software development.

" Section 5 discusses the importance of megaprogramming in academia, arguing for adoption
of the ideas of the Megaprogramming Curriculum Project into high school and college
curricula.

"* Appendix A delineates how the lecture material relates to the organization of this report.

"• Appendix B discusses the structure of the OverWew of Megaprogramming Course.

1.8 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Mathematical expressions and publication titles.

Boldfaced serif font Section headings and emphasis.

Boldfaced italicized serif font Run-in headings in bulleted lists.

6

2. SOFTWARE DEVELOPMENT IN INDUSTRY
TODAY

Discussing the importance of megaprogramming or the need for curriculum changes requires an
understanding of today's software development practices. This section describes issues that
companies in the software business face. It goes well beyond software, for software is a means to an
end and is influenced and constrained by a variety of forces that at first seem only peripherally related.
Yet these forces shape the software throughout its useful lifetime. Therefore, understanding them is
important.

The lectures and laboratory in the Overview of Megaprogramming Course refer to United Robot
Workers, Inc. (URW), a fictitious company in the robot business. How does URW conceive the need
for a particular robot model? How does it turn that need into a working product?

2.1 EXAMPLES OF SOFTWARE PROJECTS

The answer to these questions is that URW follows a software development process. In software
engineering, a process is best thought of as a set of activities carried out in some predefined order. An
algorithm is one example of a process. An algorithm is a very precisely defined process, sufficiently
precise that a computer can perform it. The processes that companies use to build products are, as
a rule, vague in describing how to perform each activity, when each activity can begin, and when it can
end. But the process adds enough order for URW to pose and solve problems in a logical sequence.

Figure 2, drawn from Slide 1-5, shows a software development process URW might follow to build a
robot. Each boxrepresents an activity. Arrows between the boxes show the order inwhich the activities
must be performed: an activity at the head of an arrow begins after the activity at the arrow's tail ends.
The labels on the arrows are the products that result from each activity.

This process begins with the Requirements activity. Here, URW's engineers determine the problem
they are trying to solve: Who is their customer, and what is he or she trying to accomplish? In other
words, what characteristics must a solution to the problem possess? Answers to these questions let
URW know what type of robot to build. For example, the laboratory at the end of Unit 3 (see Appen-
dix B) asks students to consider several different customers. One is a farmer who wants to harvest
corn. Another is a representative from the National Park Service, who wants to pick up litter. The char-
acteristics of a solution for the farmer are quite different from those for the National Park Service:

The general shape of the robots will differ, because of the terrains. A robot in a cornfield does
not have to contend with closely packed trees. Furthermore, it must carry large amounts of
corn-hundreds or even thousands of ears. By contrast, a robot that picks up litter in a forest
will zigzag around trees, limiting its size; this small size means a small carrying container, so
it can carry a much smaller volume of material than the cornfield robot. These factors have
implications on the motor and power technologies too.

7

2. Softwarc Doclopmea in lndustry Today

The robots will need different software. The litter-carrying robot encounters trees, and so
needs obstacle-avoidance routines. The cornfield robot does not.

SRequirments• ' requirmets speciriation

L4 lgn
" software design

S Code ,• implementation (untested)

[Test -- implementation (tested)

S Deliver product

Figure 2. Software Development Process

The type of customer introduces some interesting differences. The National Park Service is part of
the United States Government, and the government does not buy things the same way as a farmer.
The farmer purchases the robot at a store, The store's sales staff show her a complete product line
of robots, and try to convince her that one of their robots will meet her needs. If she agrees, she buys
the robot. If not, she either goes to a competing store or decides to do without a robot. If she ends up
purchasing a robot, she probably gets one that does almost everything she needs (but not quite) and
has a few features she doesn't want (rather like a nonsmoker who buys a car: all cars come with
ashtrays).

To satisfy this market of farmers, URW engages in commercial software development. URW will build
a line of robots with the features they think farmers want; they won't anticipate everyone's needs per-
fectly, but they will produce a product that satisfies most farmers most of the time. URW anticipates
that this strategy will yield high sales volume, justifying the extra costs of adding sometimes unused
features to the robot and its software.

The government does not operate this way. Rather than selecting from among a set of ready made
commercially available "off the shelf" robots, it will present its problem to a company and ask them
to create a robot that solves its particular problem. URW will sign a contract promising to build a robot
that solves exactly the government's problem-no more and no less. URW will agree to build the robot
at a predetermined price and to deliver it within a stated time period. This is called contractual
software development.

Software developed for the commercial market is very different from software developed under
contract. Commercial software must appeal to a broad range of people; contractual software must
appeal only to its purchaser. Commercial software is developed in anticipation of customers;
contractual software is developed for a specific customer. Commercial software, then, tends to be
broader in scope, with many features; contractual software, by comparison, is more focused.

2. Software Development in Indusay Today

Unexpectedly, commercial software usually contains fewer lines of code than contractual software.
Although more focused, contractual software tends to solve problems that are inherently more
complex than those tackled by commercial products. For example, word processing (commercial) is
simply not as challenging as satellite control (contractual). The equations for arranging text are trivial
compared to those for keeping a satellite in orbit and in touch with earth.

Furthermore, commercial and contractual software buyers have different expectations of their
productz If the farmer's robot fails because of a software error, she will be justifiably upset, but she
is not likely to suffer catastrophic loss. By contrast, failure of satellite software may render an already
launched billion dollar satellite inoperable; failure of navigational software might result in hundreds
of people losing their lives in an airplane crash. This explains why some commercial software
corporations have a reputation of letting their users find errors in their products, whereas the
government insists on extremely rigorous testing of its software (which still doesn't always find all of
the errors). It also explains why one government study estimated that the cost of testing a satellite
control program came to $1,000 per line of code. Lastly, it explains why some of the space shuttle's
hardware and software dates from the Apollo program. The software may have been written long
before anyone knew about structured programming, and the hardware may be antiquated, but both
are known to work in situations where death is the price of failure. NASAs budget cannot stand the
expense of rewriting and retesting the software for modern hardware.

The software is not the only thing that differs between contractual and commercial software
development. The software development process itself differs considerably. Figure 2 is a reasonable
abstraction of both cases, but the details of each activity bear closer scrutiny depending on the model
in use. The iollowing discussion (Sections 2.1.1 and 2.1.2) will concentrate first on the contractual
model. It will then show how the process differs when URW uses the commercial model.

2.1.1 A CoNTnAcruAL SoFrwARE Dr opasw r ScENAtuo

Figure 2 shows that each activity of a process yields some product. The product that results from the
Requirements activity is a requirements specification. This is a statement of the problem URW is to
solve. The requirements specification comes from the customer, at least initially, because the custom-
er is the one who recognizes the problem. In the contractual software development model, the custom-
er will create a preliminary version and announce that he wants to award a contract. Companies such
as URW will submit proposals on developing the software, giving a cost and schedule. The customer
will select one (typically, the lowest bidder) as the contractor. The customer and the contractor will
work together to refine the customer's preliminary version of the problem into a precise requirements
specification. This specification serves as a contract between the customer and the contractor. It states
exactly what software the contractor must develop to satisfy the customer.

What sort of information does a requirements specification contain? Figure 3 shows a sample table
of contents, annotated to explain each section. The guiding rule is to define what the software must
do, but to avoid stating how the software must do it. Slide 1-5 compares requirements specifications
to homework assignments. This is a good analogy: the teacher presents students with a problem
without divulging how to solve it.

Assume that URW submits the winning proposal. The requirements specification guides URW during
the next activity- Design. During this activity, URW conceives and plans how the robot will work. This
includes such issues as:

9

I

2. Softwne Development in Industry Tbday

"* What is the shape of the robot? During the requirements phase, URW will have noted the
terrain in which the robot must operate, and that the terrain imposes constraints. During
design, URW must choose a shape that works for the constraints.

"* What hardware will be used to build the robot? For instance, what types of sensors will it have?
What type of locomotion mechanism will it use? Furthermore, what tasks will the software
perform? That is, what is done by hardware and what is done by software?

" What is the software architecture? Software has an architecture, just like a house. URW's
engineers create a view of the robot control software as a set of interacting components. Each
component will play a specific role. For more information on the architecture of the robot
software, see the Unit 4 lecture.

1. Introduction. An overview of the problem: What is it. 4. Description of Software Functions. This is the meat of
and-broadly speaking-what is the nature of the solution the requirements specification. It describes the legal inputs
that will be proposed? tothe system andhowthe system must respond to each. This

response is stated in terms of the outputs produced. It
2. inputs and Outputs. A description of how the systetm is avoids mentioning algorithms (it is analogous to how a
connected to the outside world. For example, a word teacher tries to phrase homework assignments).
processor uses a keyboard and mouse as input and a screen
and a printer as output. An automated teller machine uses S. Reactions to Undesirable Events. The description of
a keypad and card reader as input, anda scree and a money software functions describes respones to legal inputs. This
dispenser as output. URW's robots use sensors and describes responses to illegal inputs and other "undesirable
compasses for input and control arms and locomotion events" (like detection of hardware problems). In a word
devices as outputs. processor, shutting down is usually acceptable. Software

controlling a satellite hurtling toward the outer planets
3. Modes of Operation. A description of the different lacks this luxury; it must try to recover from an undesired
operating modes, as a user might coneive them. For event.
example, word processors often have text entering modes,
ruler setting modes, equation modes, and table modes. 6. Required Subsets. Systems are often planned in full but
Modes providing a means to categorize the software built in stages. This section describes acceptable
fnctions, smVl*ing thew description- intermediate subsets.

7. Glossar], A description of terminology used in the
requirements specification.

Figure 3. Sample Software Requirements Specification TWble of Contents

Figure 2 shows the software development process as it appears in Unit 1. In fact, Slide 1-5 is a
simplification of the design process. Usually, design consists of two activities: Architectural Design
and Detailed Design, shown in Figure 4. The architectural design describes the software as a set of
components. The detailed design describes the inner workings of each component. In other words,
experience has shown that software design is easiest if one first splits the design into parts, then
concentrates on the details of those parts. This is akin to an architect designing a house by laying out
the rooms and their relative positions, then determining each room's details-the positions of the
electrical outlets and ventilating grates, for instance. The overall layout of the major components
(rooms) takes precedence over the details.

The Requirements activity was performed jointly by URW and its customer. URW's engineers are
responsile for creating the design and do not expect the customer to be involved. As part of the
contract, however, the customer will usually insist on a review after each activity. Thus, the customer
will hold a preliminary design review after architectural design and a critical design review after

10

2. Sottware Deve~ionenl in Ids~try ibday

detailed design. These reviews will assure the customer that URW's progress is satisfactory and give
URW a chance to get feedback on the quality of their design.

SRequirements e rquirement specificatin 2 +

Code

Figure 4. Activities of Software Design

Design is followed by the Coding activity. Here, URW's engineers implement the design by expressing
it in a programming language. The design envisions a solution to the problem expressed by the require-
ments; the code realizes that vision, just as a house is built to blueprints. Unlike the design, the code
can be compiled and executed. URW can use it to run a robot.

The Coding activity begins with the design and ends when URW's engineers have created a first, tested
version of each component. In large software development projects, URW will divide its engineers
into teams and make each team responsible for implementing a particular set of components. This
way, the teams can work in parallel.

Once a team finishes a component, they begin the Test activity. Testing occurs in two parts: unit testing
and integration testing. During unit testing, a team tests a component they have coded. They test the
component as an indivisible unit, according to the information about that component in the detailed
design. After a team has tested a component, they integrate it with other components that have passed
unit testing. They subject the resulting subsystems to testing; in other words, they assemble the soft-
ware component-by-component, until all components have been integrated. This process of integra-
tion and testing is referred to as the Integration Testing activity. When they have integrated all
components and tested that resulting product, they have a working system.

URW must next deliver the software to its customer. Actually, since URW builds robots and not just
software, it will integrate the software with the robot hardware. 2 It can then deliver the robot to the
National Park Service. This involves transporting the robot to its destination, performing final tests
in the actual environment, and training necessary personnel to operate it.

Finally, URW must support the National Park Service in using the robot. Despite URW's engineers'
best efforts, the robotwill probably fail occasionally because of errors URW made while designing and
implementing the software. URWwill be responsible for fixing these errors and for delivering the cor-
rected software to the customer. It is also likely that the Park Service did not fully understand the scope
of the problem and made errors in the requirements. For example, they might have forgotten that the
trail they want the robot to patrol floods each spring, therefore, they did not ask for a watertight robot.

2. URW will have a hardware development prooe as well as a software developimet process. The combined effort to
develop hardware and software a called the system development proess, but that's outside the scope of this paper.

it

2. Sftwva Dcvclopmcw in Industry WD]ay

Accordingly, they may ask URW to redesign its robot. URW will be asked to correct design errors at
no charge, since such errors are its own fault; but the Park Service must pay URW to implement
changes in the requirements, because the original requirements were a contract that URW fulfilled.
Each change will be done by following the software development process in miniature, modifying ex-
isting work rather than creating products from scratch. The Park Service and URW will first agree on
the modified requirements. URW will then determine how the change affects the design. It will then
modify the code, test the modified version, and deliver the new version to the Park Service.

Error-free products are, unfortunately, the exception rather than the rule. This is true of all products,
requirements and design as well as code. Datamation (1994) reported that California's Department
of Motor Vehicles committed 28 million dollars to modernizing its computers. The new facilities were
installed after 6 years, at a cost of 44.5 million dollars--and were junked after a few months, because
the requirements had been expressed improperly. Ince (1988) describes a U.S. Government Account-
ing Office report showing that over 90% of government-contracted software systems were unusable
as delivered-and of that 90%, over 50% had requirements so poorly conceived that they could never
be used. The cost of modifying the software would have exceeded that of maintaining the status quo.

In other words, Figure 2 is something of an idealization. Royce (1970) termed it a "waterfall model"
of software development, since it depicts work flowing smoothly down from one activity to another,
as water flows downstream over a series of falls. In reality, the work flows upstream too: Figure 2
should show arrows from design to requirements, from code back to requirements and design, and so
on-that is, from each downstream activity to all activities upstream from it. The arrows would denote
errors from a previous activity caught during the activity at the arrow's tail. People omit these arrows
to simplify the picture, claiming that the arrows shown in Figure 2 depict the most significant work
flows. The data in Slide 1-6 contradict this, as do the arguments of many researchers in the area
(McCracken and Jackson 1982).

2.1.2 A ComMatcuL SoFrwAmE DEELopMENT ScENARio

When URW develops a robot to harvest corn in a field, it will follow the process in Figure 2. The
essential steps of commercial software development remain the same as for contractual software
development. However, the objectives of the activities are quite different. This section gives a scenario
for commercial software development.

The Requirements activity differs most. There is no customer to develop the initial requirements
specification for URW. Instead, URW must perceive the market for a corn harvesting robot and
determine the characteristics of that robot themselves. This is a risky operation. URW should consult
with farmers who maybe potential customers, trying to understand what theywould like in a robot-in
fact, trying to understand if there really is a market for such a robot. Many a clever invention has failed
because it solved the wrong problem, because it had too much close competition, or because people
turned out to be satisfied with what they had.

The requirements specification that URW develops is therefore not a contract. It is only a description
of the problem to be solved. As in contractual software development, URW's engineers use it to guide
them during the Design, Code, and Test activities. These three activities do not differ significantly
from their counterparts in contractual software, .velopment. URW's goal for each is still the same:
to produce a product that is a solution to the problem stated in the requirements. However, there is
no customer. An outsider does not fix a schedule; URW simply tries to get its product to market
quickly. URW holds design reviews solely for its own benefit.

12

2. Softwaic Dxeiopmcnt in Indusuy Today

This isolation poses problems for URW. Software engineers have long recognized that the only
reliable way to assess software's correctness is to try it in an environment representative of its ultimate
market. If, during development, URW is beholden to no customer, how can it ensure that its products
will satisfy customers? URW might address this risk by performing alpha testing and beta testing.
URW "alpha tests" its product by using a preliminary version in a realistic environment. Engineers
operate the product as if it were the final version, except no one is surprised when it fails. This provides
URW with useful feedback without fear of alienating customers.

URW follows alpha testing with beta testing. During beta testing, URW gives the alpha-tested version
of its product to a few selected customers. These customers, who are usually given some financial
incentive, also operate the robot as if it were a final product, again with the realization that it will
probably fail (URW selects customers who are potentially interested in the robot but whose business
is not jeopardized by its failure). Customers report failures and other problems to URW. As URW
receives their reports and corrects the problems, it gains confidence that its product is robust enough
to compete in the marketplace.

In the Deliver activity, URW does not deliver the software to a customer. It markets its product
through an appropriate channel, like a store or a mail-order service. In the Support activity, it gauges
its product's success based on sales. It keeps abreast of interest in the product and determines whether
the product can be improved-often, introducing a product changes the environment in which it is
used, leading to new product opportunities. (Witness the automobile, whose capability for greater
speed than the horse led to the paved road; in turn, paved roads led to faster automobiles.)

In short, UTRW is not directly responsible to a single customer, as in contractual software development.
Although contractual software tends to be more complex than commercial software, the requirements
for commercial software are much harder to discern and much more likely to change. Commercial
companies usually introduce new products more frequently than contract-based companies. They
often have a complete product line-that is, a set of related products-so they can compete in several
market niches. Where the contractual company supports only a single version of a product, the
commercial company must support each product in its product line-not to mention always having
to consider whether to add new products to the line.

2.2 PROBLEMS WITH SOFIWARE DEVELOPMENT

Section 2.1 showed how URW could follow an organized software development process to create its
robot control software. So what could go wrong? Plenty. In reality, software development is just this
side of chaotic. This section shows some of the reasons why it is difficult.

Expres•software requirwnents. Requirements written in English are usually ambiguous: the
gift of clear expression is given to few. Requirements are often incomplete. One way to think
of software requirements is that they should describe all possible inputs and all allowable re-
sponses to those inputs. No one has yet discovered a good method for determining whether
requirements written in English can describe all the inputs and responses.

Because of this problem, many people have proposed expressing requirements using
mathematical notations. Such notations are unambiguous and can be checked for
completeness--often by automated tools, which is especially helpful as it relieves people from
performing a tedious, time-consuming chore. However, many people find these notations
difficult to learn and use. No conclusive evidence exists that mathematical notations are more
effective than using English.

13

2. Software Dvlopmeat in Industry Today

Furthermore, the real problem with requirements is not so much whether they are complete
and unambiguous, but whether they describe the right problem. Time and again, experience
has shown that people have difficulty fully grasping a problem-and grasping the problem is
vital to producing the correct solution. This is well illustrated by a radar system the U.S. built
in Greenland in the 1950s to detect missiles over the North Pole. Early in its operation, it re-
ported the approach of a missile the size of the moon-indeed, it was the moon, for the people
who wrote the requirements had overlooked that celestial body's existence. The engineers
who wrote the software from those requirements did their job perfectly, for they satisfied their
contractual obligation to detect high-altitude, distant objects. Sometimes, the most obvious
things are most evasive.

Determining whether the requirements describe the right problem is termed validation.
Validation is different than verification-determining whether the software behaves
according to the requirements. An organization can perform verification on its own, but
cannot validate software except by exposing it to customers. (The laboratory illustrates this
point: the Validate Requirements step forces students to put questions to their hypothetical
customers.) Therefore, validation is risky. In contractual software development, customers
may be forced to admit they did not understand their needs. In commercial software
development, an organization faces embarrassment if its potential customers judge its product
shoddy or ineffectual.

"Following a software development process. Telling someone they must write a software
requirements specification is one thing. Telling them how to write that specification is another.
Software developers understand the processes they must follow much better than they
understand the methods for performing individual activities of a process. Despite extensive
research in the area, specifying and designing software remains something of an art. People
are told that an activity must yield a certain set of products, but are on their own as to how they
should create those products. People have proposed methods, such as structured analysis
(Marco and McGowan 1987) and object-oriented design (Coad and Yourdon 1990); but
methods ease the problem at best. They do not solve it.

The discussion of Figure 2 on page 12 mentioned that it omits mistakes and therefore
describes software development only partially. This is another dimension of the difficulty of
following a process exactly. The picture is supposed to depict an orderly sequence of activities
that occur one at a time. In reality, several occur simultaneously, working with partially
finished and not fully correct products. Such a situation is very difficult to manage.

" Keeping requirements and docuntation up to date. All too often, when errors are found in
requirements or design documents, no one bothers to create a new, fixed version. Even though
the errors are corrected, nobody records the change except in the software. The software is,
after all, the goal. As long as it behaves as everyone expects, why bother correcting a mistake
in the design document?

The answer is to avoid confusing the next person who reads the design document.
Unfortunately, software developers are under pressure to get the software up and running.
Every change they make to the design document delays the software. Those delays cost money,
in the form of lost sales or broken contracts. Companies concentrate on the end product and
ignore the intermediate ones. They forget one crucial detail: the majority of effort that goes
into software occurs after the first version is deployed (Boehm 1981). One reason people

14

_A

2- Software DMvelopment in Industry Today

spend so much effort during that time is because they're reading incorrect and out-of-date
requirements specifications and design documents. These documents were supposed to help
them understand the software and facilitate its maintenance; instead, they confuse.

"Graspingsoftware design. No one has discovered a way to describe software design clearly and
concisely. Many techniques have been tried. Industry is awash with designs featuring data flow
diagrams, component interface specifications, information hiding structures-the list goes on.
These are helpful, unquestionably, but they lack a key quality: they do not present an inte-
grated, all-inclusive picture of design. An architect's blueprints convey a clear picture of a
house. An electrical engineer's circuit diagram shows all the parts and interconnections need-
ed to build an electrical system. By comparison, any of the software design notations just men-
tioned present only a tiny part of the software's structure. (This situation probably reflects the
relative age of the professions. Architects have had several thousand years to refine their craft.
Electrical engineers have had over a century. Software engineers have had less than 30 years.
In time, perhaps, software engineers will discover an equally descriptive notation.)

" Resisting change. People and industries like to stick with familiar methods and are reluctant to
adopt new approaches. What project manager wants to risk her or his project's success on an
unproven technology? Any technology is viewed with skepticism unless it is proven to be much
more effective than current practice. New techniques necessitate training, which consumes
valuable time and increases cost. A manager will readily accept change only when someone
has shown that instituting the change will save time or money. Unfortunately, studies that
prove such savings conclusively are few and far between in the world of software.

There are many, many more reasons why software development is so difficult. This section is by no
means comprehensive; the problems discussed are only those most closely related to the Overview of
Megaprogramming Course. Brooks (1987) gives an excellent discussion of other reasons.

2.3 SUCCESS STORIES IN SOFIWARE DEVELOPMENT

The preceding section might seem too gloomy. Software is involved in many aspects of our lives. In
other words, people can and do develop it. So is developing software really such a problem?

The answer to this question lies more in the economics of software than in the technical problems in
building it. Everyone knows how hardware costs have fallen steadily since the computer was first
created. Computers keep getting faster, cheaper, physically smaller, and logically bigger. By contrast,
the cost of developing software has not changed much over the past few decades. A NASA study during
the late 1980s by Kouchakdijan, Green, and Basili (1989) showed the average software developer pro-
duced 24 lines of code per day, a figure about the same as in the 1950s. To be sure, today's software
developers are building much larger systems. Then again, they program in much more advanced lan-
guages, use interactive terminals instead of punched cards and paper tapes, and have access to devel-
opment environments which would turn a 1950s programmer green with envy. One would think that
these advances should make today's developers much more productive. In general, this does not seem
to be the case. Software remains costly to develop and maintain.

However, some projects have produced software at much lower cost than average. Sometimes this
improvement comes from the people staffing the project: Boehm (1981) has shown that individuals'
productivity varies by a factor of 4 depending on their skills. Other times, though, the difference can

1s

2. Softwarc Developnent in industry Today

be attributed to technical factors. This section explores some promising areas of the state of the art
in software development.

2.3.1 PROGRAMMING LANGUAGES AND PRODUCFIITY

There is some evidence that productivity is independent of the language or environment a person uses.
Assume a person writing in assembly language averages 24 lines of assembly language each day. That
same person would average 24 lines of Pascal each day, or 24 lines of Ada each day. If they were devis-
ing a spreadshee!, they would average 24 lines of the spreadsheet language each day. The explanation
for this is that the human mind can deal with a certain amount of detail and complexity. Each of these
languages has its own set of complexities the person must master.

This does not mean language is unimportant. The 24 lines of Pascal are not equivalent to 24 lines of
assembly language; they are probably equivalent to several hundred assembly language instructions.
Thus, the Pascal programmer will be far more productive than the assembly language programmer-
that is,will build the same application quicker. The Ada programmer will be better yet, and the spread-
sheet programmer will beat them all.

Of course, the spreadsheet programmer can only create spreadsheets, whereas the Pascal and Ada
programmers have more options; none of them has the flexibility of the assembly language program-
mer. The programmers working in higher-level languages are working in restricted problem domains.
That is, they are dealing less with characteristics of their computer and more with characteristics of
the problem they are solving. The spreadsheet programmer's energies are directed toward creating
the spreadsheet formulas. If the Pascal programmer tried to write the same spreadsheet, he or she
would also have to consider details of creating and manipulating data structures to represent the
spreadsheet. These details are irrelevant in the spreadsheet language; they are embedded in the
spreadsheet program itself. The assembly language programmer would have to consider not only
these details, but computer-specific details as well-which registers to use, the most efficient memory
locations for information, and other details that are irrelevant in Pascal because they are embedded
in the compiler.

Software development started with languages that forced people to consider computer-related
details. It has been moving steadily away from such languages ever since. Languages like Pascal and
Ada are intended to help programmers represent algorithms. They are therefore suitable first
languages because computing courses begin by teaching students algorithmic programming concepts.
However, one of the crucial achievements of software development is the realization that many parts
of a program are best represented using nonalgorithmic constructs. Instead, programmers write
software using a language specific to the domain of the problem being solved. This language is at a
higher level than Pascal or Ada. Therefore, the person who writes 24 lines in this higher-level language
achieves a result equivalent to the person who writes several hundred lines in Pascal.

This movement to higher-level languages has yielded significant productivity increases. The rest of
Section 2.3 briefly describes examples of such languages, with insights into how they arose.

2.3.2 SPREADSHEETS

Spreadsheets have become increasingly popular i_: the last decade. They excel in expressing complex
calculations. They relieve the user from having to worry about user interface arrangement, for they

16

2. Software Development in Industry Today

provide a standard. They allow tabular data entry and present data in that and a variety of other
formats, such as pie charts and bar graphs.

Spreadsheets are a simple example of programming in a restricted domain. Creating a spreadsheet
is, after all, a form of programming. It requires following a process not unlike that for software
development. The first task is to determine what information should be entered into the spreadsheet,
what information should be displayed, and the general appearance of that information. The second
task is to design formulas that calculate the results of the spreadsheet. The third task is to implement
that design by creating the skeletal spreadsheet. The fourth task is to verify that the implementation
works. These tasks, then, are the Requirements, Design, Code, and Test activities from Figure 2. The
average spreadsheet user may not perform them with the rigor of a professional software development
company, but the necessary activities are still the same.

There are, of course, many things spreadsheets cannot do. They are inherently two-dimensional and
are not well suited to data in three or more dimensions. They are not intended for esoteric functions
like real-time control or animation. These restrictions are deliberate. Companies began developing
spreadsheets when they realized how much information in today's world lends itself to tabular presen-
tation. Many people were writing similar programs: no matter what data they manipulated, all were
working with calculations on two-dimensional data.

The inventors of spreadsheets therefore had two great insights. First, they recognized that many
people were writing programs to solve similar problems: all had tables of data as inputs and, as
outputs, theyhad that data plus calculations derived from the input, presented in forms derivable from
the original two-dimensional format. Second, they realized that the calculations being made on the
input data did not require the power of a general-purpose programming language, but could be made
based on matrix algebra formulas and a set of predefined mathematical functions. The former insight
told them what problem they needed to solve. The latter provided them with an elegant solution. They
had only to write the spreadsheet program. The users of that program could write their own
"programs" but did not need professional software development skills.

2.3.3 UsER INTERFACE GENERATORS

Implementing the user interface has traditionally been one of the most difficult and time-consuming
parts of software development. In one study, Boehm, Gray, and Seewaldt (1984) discovered that, on
the average, over half the code in a program handles its user interface. This predated such modern
advancements as mouse-driven input and graphical windows full of color icons, so the figure is
probably higher now.

To complicate matters, traditional programming languages are terrible at representing details of user
interfaces--and creating a user interface is all about details. Programming languages are basically
one-dimensional, a long string of statements, whereas a graphical interface is two-dimensional and
hierarchical. Consider the following user interface requirement, which is fairly straightforward for a
person to understand:

The interface is to be divided into two windows. Window 1 is to be 3 inches wide and 4 inches high. It
will contain three buttons and one window for text entry. Window 2 is to be 1 inch wide and 5 inches
hi, '-. It will contain a text label and four buttons. Window 2 is to be positioned half an inch to the right
of Window 1.

17

2. Software Development in Industry Today

This requirement has no simple representation in a programming language. Even though
unrealistically simple, it would be implemented by hundreds, if not thousands, of lines of code, when

one considers the complexities of handling inputs from both a mouse and keyboard (implied by the
requirements for buttons and text entry), for placing the windows, and for displaying outputs in them.

Also, the requirement is not nearly detailed enough. It says nothing about the appearance of the
windows and their contents. What colors are the windows? Do they have borders? Are the mouse
buttons round or rectangular? Simple decisions like these are tedious to describe as requirements and
more tedious to implement in a programming language. The person writing the requirements would
much prefer to use a picture like that in Figure 5, and the engineers implementing the interface would
prefer a more convenient representation than what programming languages offer.

"Window 1 Window 2

H E Status: Running

Enter Text Here

Figure 5. A Pictorial Representation of an Application's Interface Requirements

This has led people to study the domain of user interfaces. The common problem is the need to provide
an effective, easy-to-use interface. People at first proposed special interface-description languages
(Wartik and Penedo 1986; Hayes and Szekely 1983); but the real breakthrough came when someone
realized that:

"* The most natural way to describe an interface is to draw a picture of it

"* A program that supports drawing a picture of an interface has enough information available
to generate an implementation of that interface

The insights resulted in tools such as HyperCard, Visual Basic, TAE Plus, and many others. All are
based on the principle of software developers constructing the user interface by drawing a picture of
it, then writing the rest of the program ina standard programming language which uses a predefined

18

2. Software Development in Industry Wbday

paradigm to obtain inputs and display outputs. (The paradigm depends on the tool and is beyond the
scope of this rcport.)

These tools have allowed developers to build software with remarkably complex interfaces in what
would once have been thought of as an inconceivably short time. The tools facilitate this because their
developers studied the domain of user interfaces and discovered how to describe variations among
interfaces. Their only drawback is that they inhibit flexibility. Software developers have a fixed set of
input and output media (buttons, text entry areas, forms, labels, etc.). In fact, this is not really a draw-
back, for using the tools results in interfaces with a common "look and feel." Thus, the user of any tool
created using Visual Basic (used to create Figure 5) immediately identifies the shaded rectangles as
buttons and knows that pointing the cursor on one and pressing the mouse button invokes the action
indicated by the button's label.

Once again, analysis of a domain has yielded an understanding of common problems and a means to
state solutions to those problems in a form more natural than a programming language. For spread-
sheets, the solution involved inventing a new programming language. Here, the statement is purely
pictorial; no written language is necessary. Either case points toward an important trend in software
development. Traditional algorithmic programming languages are intended to express algorithms; but
just about any problem has nonalgorithmic aspects best expressed in a nonalgorithmic form. More and
more, people are creating such forms as a means to enhance software development productivity.

2,3.4 RAPID PROTO"PMING

Section 2.2 described the problems that stem from improper requirements-requirements that are
consistent and unambiguous, but describe the wrong problem. When a company designs and imple-
ments a solution to requirements, it makes a costly investment. If the requirements are wrong, the
results can spell financial doom.

To lessen the risk of solving the wrong problem, companies sometimes rapidly create a prototype
(termed a rapid prototype) from the requirements. They will ask a group of engineers to create, as
quickly as possible, a rough version of the system. The intent is to simulate the system's external ap-
pearance (in particular, its user interface) and its functionality. The company can then use the proto-
type tovalidate whether the requirements address the intended problem. If not, the company will have
avoided a large, costly mistake and will correct the requirements and the prototype until they are con-
fident they understand the problem. They will then produce an actual version of the system. For exam-
ple, URW might create a prototype litter-gathering robot with the necessary functionality but not
robustness. The Park Service would test it to see whether it was viable-have they correctly described
the concept of litter, or will the robot snatch a backpacker's tent?

When a company creates a prototype, they do not intend it to be of marketable quality. If they did,
they would be creating an actual system rather than a prototype. The prototype is created to study
specific aspects of a system, such as user interface. Generally, the prototype does not include all the
functionality that the actual system will contain; a subset suffices to demonstrate the tool's utility.

Prototypes are often written in special, very high level languages with constructs useful for
prototyping. Such languages result in small, easily modifiable programs. This is important in rapid
prototyping, because prototypes must change rapidly in response to changes in requirements.
(However, the programs often execute slowly; such is the price one pays for flexibility.) The languages
achieve their power by incorporating constructs from the domain in question. The language for

19

~ !_

2. Software Developmact in Industry Today

programming Karel the Robot (Pattis 1981), used in the laboratory, illustrates this. Its purpose, from
a prototyper's perspective, is to explore movement strategies. It lets the prototyper ignore such issues
as:

" How the sensors operate. The cornfield robot needs different sensor software (and perhaps
hardware) than the litter-gathering robot. Ears of corn are more or less alike and occur in
expected places. Litter comes in many shapes and sizes and can be anywhere.

"* Daxils of motion. The Karel programmer moves the robot using the MOVE instruction. The
real robot has to account for startup inertia, maximum velocities, and many other factors.

URW might use a language such as Karel to explore issues through a rapid prototype. The prototype
is based on the requirements, so the customer can study the prototype to help see whether the require-
ments are correct. URW and the customer use this information to revise the requirements and build
a real robot.

Many interesting rapid prototyping systems exist. Some examples are IDE's Software through
Pictures and i-Logix's StateMate. It's worth noting that, as computers become faster and faster, what
was once an unacceptably slow rapid prototype becomes a viable software product.

20

3. AN OVERVIEW OF ARPA'S
MEGAPROGRAMMING EFFORT

The United States Government is very concerned about the software development problems
described in Section 2. A 1994 report to Congress (Paige 1994) stated that the Department of Defense
alone had spent $30 billion on software in 1990. It estimated that the department's expenditures would
jump to $42 billion in 1995. This figure does not include other branches of government, such as NASA
and the Department of Energy, which have their own considerable investments. Nor does it count the
commercial market in software, seen as one of the country's key assets. It is no exaggeration to say
that the ability to produce quality software at a competitive price in the world market may determine
a country's economic future. Hartmanis (1992) reports that software is already more than 5% of the
United States' gross national product and growing-$51 billion in the corporate market alone,
according to Emigh (1994).

Because it routinely produces large software systems, the Department of Defense has traditionally
supported much of the country's computer science and software engineering research. Much of this
research has been sponsored by ARPA. One of ARPAs most famous projects was the ARPAnet, the
first major national computer network and the source for many of the ideas in today's Internet.

In 1990, to help fight the rising cost of developing and maintaining software, ARPA launched research
and development of megaprogramming. Megaprogramming is an approach to software development
that entails "building and evolving computer software component by component" (Boehm and Scher-
lis 1992), rather than line by line. Software developers avoid programming in the traditional way of
composing lines of code into a program. Instead, they make use of existing components: procedures,
functions, packages (in Ada), or classes (in C+ +). Components are the result of previous developers'
efforts. Thus, each new project tries to capitalize on the fruits of earlier labors, rather than creating
programs from scratch.

This is known as software reuse. Simply put, reuse of software means extracting pieces of existing
software and using them to create new programs. Such new programs consist partly of code created
expressly for the new program and partly of "reused" code. Many people today see reuse as the key
to creating cheaper, higher-quality software. Using existing, already working code has clear
advantages.

Reuse is not a new idea. McIlroy (1968) proposed the idea over two decades ago. Reuse may even
seem an intuitively obvious strategy for software development. In fact, it has been around ever since
the invention of the subroutine, which lets people reuse the same function in different places in their
code.

However, reuse on a large scale-across programs, between developers, or even on a nationwide
level-has been notoriously difficult. Many projects try it, only to find that reusing code results in
lower productivity than creating it from scratch. The following are some of the reasons why-

21

3. An Ovrve'w of ARPM's Mepprooramming Effort

" People have different programming styles. A developer is usually not content to insert a chunk
of someone else's code into her or his own program. The clash between styles lowers the
program's readability, which reflects poorly on the developer. Nobody wants their code to be
unreadable.

" Realizing a need for reuse is one thing; finding code to fit that need is another. Establishing
"reuse libraries" has proven difficult. People have tried creating classification schemes akin
to those used in libraries; these schemes categorize software by function. However, these
schemes often fail because developers do not know the classification schemes well enough to
search for software.

Moreover, searching a reuse library generally yields code that performs a function similar to,
but not exactly matching, the need. Here the analogy to a library of books breaks down. A soft-
ware engineer hopes to find and reuse a complete procedure; a scholar looks to draw material
from portions of a book. A software engineer wants to use the procedure unchanged; a scholar
generally recasts the material in her or his own words. As an example, a Pascal programmer
who needs to sort an array of records cannot use a procedure that sorts an array of integers.
The programmer can modify the procedure, but that increases the risk of introducing errors,
subverting one of reuse's advantages. The problem of exactly matching needs grows with the
complexity of the need and strategies for dealing with it (e.g., Ada generic parameters, C+ +
inheritance hierarchies) become increasingly less effective.

" Software developers have an unfortunate tendency to trust their own code and mistrust
everyone else's. This attitude, termed the not-invented-here or NIH syndrome, stems from
their experiences with other developers' buggy software and from their unshakable faith in the
supremacy of their own programming style. Given the choice between writing something
themselves or taking someone else's code and verifying that it works, they claim the former
will wind up being simpler. They forget that their attitude toward others' code is the same as
others' attitude toward their code. Weinberg (1971) reacted strongly against this attitude and
coined the phrase "egoless programming" as the ideal that developers should adopt.

" The software world has adopted relatively few standards, and standards are what has allowed
reuse to succeed in other fields. In the United States, electrical sockets deliver 120 volts of
current alternating at 60 cycles per second. For this reason, televisions plug into the same
sockets as microwave ovens. Their manufacturers do not have to anticipate arbitrary electrical
power supplies, because the country has adopted a single standard. When a company designs
an electrical appliance, its engineers can reuse an existing design for the power supply.

By comparison, few software standards exist. There are some exceptions. The X Window
System (Scheifler and Gettys 1986) provides a standard for client-server software.
DOD-2167-A (Department of Defense 1988) is a standard for documentation to accompany
the software development process. The systems in Section 2.3.3 define a standard look and feel
for user interfaces. However, no one has yet found a standard that, when followed, helps
people interconnect two arbitrary software components.

ARPA recognized these difficulties. Megaprogramming, therefore, tries a specific angle to help make
reuse work. It presumes a product line approach. That is, organizations must consider themselves to
be manufacturers of a line of software products, not producers of a single program. In fact, this usually
involves only a change of attitude and not one of production. If a company sells commercial software

22

3. An Overvie of ARMS Megaprogtomnin EMet

that runs on more than one type of computer--and most major ones do-it sells a product line and
not a single product. Its engineers must make different design decisions based on the target computer.
It must package the product according to the installation procedures appropriate to each computer.
It must create separate documentation for each package.

A contractual company does not operate this way; it creates software for a customer's computer.
However, contractual companies acquire a reputation in specific areas and do business mainly in those
areas. A succession of contracts in an area makes a product-line view desirable. Suppose URW wins
three contracts: one for a litter-collecting robot for the U.S. Park Service, a second for a
search-and-rescue robot for the Alaska National Guard, and a third for a mineral-prospecting robot
for the U.S. Department of the Interior. Although the robots will differ in many ways, they will also
share many important similarities. URW's ability to capitalize on those similarities--especially by
reusing software from one robot to the next-will determine how cheaply it can build each robot and,
hence, how competitive it can be. In other words, if a contract-oriented company views its products
as a product line over the course of several contracts, it can reuse software.

Megaprogramming demands one characteristic of software product lines: that all products in the line
share similarities. This is not necessarily the standard use of the term "product line." A company in
the tool business might call its home construction and repair tools a product line. This could encom-
pass everything from a screwdriver to an air compressor. Megaprogramming employs the product line
concept to speed up software development based on similarities. Similarities between a screwdriver
and an air compressor are not immediately obvious. Therefore, such a product line would be of no
value in the megaprogramming approach.

ARPA believes that megaprogramming holds great promise for improving America's ability to
develop software. It has allocated considerable research and development funding for
megaprogramming. ARPA first considered megaprogramming an advanced software engineering
technique, best learned by seasoned software developers. After further consideration, however, its
proponents realized that many aspects of megaprogramming were elementary and required no
experience. ARPA also came to believe that merging these concepts into the early computing courses
could present students with a more realistic picture of software development. Students would,
therefore, be better prepared to enter the work force as skilled software developers. Even those
destined for graduate studies or academic careers would benefit from knowledge of
megaprogramming, for they would have a fuller understanding of the problems in software
development than today's graduates.

ARPA therefore initiated the Megaprogramming Curriculum Project. Its ultimate goal is to change
the computing curriculum to include megaprogramming concepts. If it is successful, students will
graduate knowing how to perform megaprogranmming andwill think of software reuse across a product
line as a natural and obvious way to develop software-quite in contrast to today's start-from-scratch
mentality (see Section 5). This report and the Ovenriew of Megaprogramming Course are the early
products of the project: an introduction to megaprogramming concepts and a rationale for their use.

23

3. An Ovelvtew of ARP~s Mcgaprogagunag Effort

This page intentionaliy left blank-

24

4. MORE ON MEGAPROGRAMMING

So far the emphasis in this paper has been on the problems facing today's software developers. Section
3 discussed how ARPA has recognized the problems and advocated megaprogramming as a solution.
Section 3 stated that megaprograniming is a product-line approach. It did not actually define
megaprogramming, though, and the purpose of this section is to do so.

The lecture defines megaprogramming (see Slide 1-8) but never gives a complete definition. Indeed,
the notes for Slide 4-12 end by asking students their opinions on the term's meaning. The definition
in this section is deeper, not being confined to the format of slides and an accompanying page of notes.
It provides a fuller explanation of the key concepts and underlying issues. The material might be too
detailed for an introductory lecture, but understanding it will give greater confidence when discussing
megaprogramming.

This section begins by discussing domains, a foundation of megaprogramming. It then uses domains
to present the definition of megaprogramming; this is accomplished by first presenting a scenario of
a company performing megaprogramming, then tying together concepts from the scenario to give an
actual definition of megaprogramming. The section concludes by showing how megaprogramming
improves an organization's ability to develop software.

4.1 DOMAINS

Section 3 mentioned that megaprogramming is a product-line approach to software development, but
also pointed out that the definition for "product line" was not necessarily the standard one. In mega-
programming, all products in the line must share similarities. Understanding this concept is vital to
understanding megaprogramming.

The product-line approach in megaprogramming is based on the concept of domains. Section 2
introduced domains, but informally. The definition on Slide 2-4 omits some subtleties. Here is the
complete story. It is not a simple story; it requires understanding several other concepts, which will
be introduced presently.

4.1.1 CONCEPrS OF DOMAINs

First, it may help to understand what a domain is not, since the word is in common use. A decidedly
informal and unscientific survey of the Consortium's employees revealed that most thought domain
meant "home." This meaning is not relevant to megaprogramming.

25

4. More on Megapiogramming

Webster's gives six definitions for the word "domain." Two are of interest:

1. A sphere of influence or activity.

2. The set of elements to which a mathematical or logical variable is limited, specifically the set
on which a function is defined. (This is the definition used in mathematics.)

Actually, the concept of a domain in software development has little to do with the use of the word
as it relates to functions. When mathematicians speak of function's domain and range, they are refer-
ring to sets of entities, such as integers, real numbers, or strings. They are concerned with the relation-
ship between two sets. When software developers speak of a domain, they are interested primarily in
the set for its own sake, not its relationship to another set. In software development, a domain has no
associated range. There is no mapping from domains to anything else. Software developers concern
themselves with what makes up a domain and why.

So why give the second definition? The reason is that when discussing software, people speak of
domains as if they were a set of elements. Slide 2-4 mentions "the domain of robots." In the Unit 3
laboratory, students create software in the domain of robot control programs. Humans, it seems, feel
a need to assign short labels to large areas. Referring to the totality of concerns would be more
descriptive, but nobody has found a simple way to do it; instead, they assign a label that partially
describes the domain. So software developers face the same puzzle Alice faced in Lewis Carroll's
Through the Looking Glass:

"You are sad," the Knight said in an anxious tone; "let me sing you a song to comfort you."

"Is it very long?" Alice asked, for she had heard a good deal of poetry that day.

"It's long," said the Knight, "but very, VERY beautiful. Everybody that hears me sing it-either it
brings the TEARS into their eyes, or else---"

"Or else what?" said Alice, for the Knight had made a sudden pause.

"Or else it doesn't, you know. The name of the song is called 'HADDOCKS' EYES.'"

"Oh, that's the name of the song, is it?" Alice said, trying to feel interested.

"No, you don't understand," the Knight said, looking a little vexed. "That's what the name is CALLED.
The name really IS IHE AGED AGED MAN.'"

'Then I ought to have said That's what the SONG is called?' "Alice corrected herself.

"No, you oughtn't: that's quite another thing! The SONG is called 'WAYS AND MEANS;' but that's
only what it's CALLED, you know!"

"Well, what IS the song, then?" said Alice, who was by this time completely bewildered.

"I vas coming to that," the Knight said. "The song really IS A-SITTING ON A GATE;' and the tune's
my own invention."

There may be many ways to label a song, but they don't necessarily describe what it IS. Instead, they
describe some facet of it (all the titles are phrases from the song). Similarly, there are many ways to
label a domain. The one used most often is the one describing the domain's most tangible, visible

26

4. Mom on Mepprogranummg

product. For example, URW produces and sells robots, so its engineers would speak of "the domain
of robots." Yet the user manuals, requirements specification, and design documents that URW
produces give a fuller explanation of the domain than anyone could glean from examining URW's
robots (how many people can operate a personal computer without ever consulting its user manual?).
So user manuals, requirements specifications, and design documents are equally part of the domain,
for they describe what is in the domain at least as well as does the set of robots URW builds.

Defining a domain as a sphere of influence or activity is more accurate when discussing
megaprogramnming (Slide 2-4 uses the phrase "well-defined area"). Unit 4 hints at the reasons why.
When domain engineers define a domain, they study their company's activities to determine what
programs are in the domain (Webster's second definition again). But in software engineering, a
domain is more than just an arbitrary collection of programs. If two programs are to be part of the
same domain, then by definition they must have some similarities. (This is another reason why
definition 2 is not adequate. The domain of a function can be an arbitrary set.) Domain engineers,
therefore, need criteria to determine whether two programs are related.

They derive these criteria by thinking of their company's products as solutions to the problems their
customers face. lb define the criteria, then, a business must first understand its customers' problems.
The details of problems depend on a company's business. Some are technical. A chemical engineering
company might develop software to control its chemical production-opening and closing valves,
monitoring fluid flow, and checking pipe pressures. The software will be a morass of thermodynamic
equation calculations. An aerospace company might develop satellite control software, full of
navigational and positional computations.

4.1.2 INFMENxc OF DoMAiN ON SoFrwARn DEvELOM•ENT

The technical problems mainly influence software design. Other problems are not technical and tend
to exert more influence on what the software does (the difference between requirements and design,
discussed in Section 2.1). Before deciding how to manufacture chemicals, a company must first decide
what chemicals to manufacture. Before writing satellite control software, a company must determine
what types of satellites it's going to control. In other words, a company should decide its market before
it starts developing products. This decision bounds the set of problems domain engineers must define
and solve.

But companies do not always use domain engineering (i.e., a megaprogramming approach) to solve
problems. They only do so when they expect to set up a product line. Figure 6 helps show why. When
a company first realizes the potential for sales in a market, it establishes a business area--that is, an
organization tasked to conduct business in that market. This organization will study the market and
determine the problems tobe solved for business to succeed in that market. The organization will then
propose solutions. It maydecide that the most effective way to compete in the market is to offer a prod-
uct line. If so, it will define the scope of the product line: the exact set of products to bring to market.

Market --- ,* Bumes Area --), Product Lira A

Figure 6. Relationship of Market to Domain

It must then determine the most effective way to manufacture all the products in the line. If the
products all seem similar, the company will conceive of them as a domain and use domain engineering

27

4. More on Mesaproranuming

techniques to implement process support (see Slide 4-2). Process support is whatever helps the
company manufacture products in the product line. It consists of three parts:

"* A product family. This is the set of programs (and related entities, like the requirements and
design) that are in the domain.

"* The application engineering process for producing products. This is what Slides 3-5 through
3-7 describe for the robot domain. The application engineering process tells how to use the
product family to build products.

" Software to support using the application engineering process. The software for the Unit 3
laboratory is an example of such software. It references files in the directory hierarchy rooted
at GEN\AC (relative to the directory where the laboratory is loaded); these files constitute
the product family of robot control software.

Based on these concepts, a domain can be defined as process support for a product line.

Note that the lecture notes do not use the term "product family," instead referring to a domain as if
it were a product family. This is a simplification. A product family is one facet of a domain. Under-
standing this is important to understanding megaprogramming. However, it's mainly relevant during
domain engineering; it's therefore not important for the course, which covers domain engineering
lightly.

As it builds the product family, the organization takes advantage of the similarities among solutions
to problems in the domain. This helps it build all product-line members more efficiently than if it tried
to build them all separately. This strategy only works when there are many similarities among mem-
bers in the product line. The home construction tools example in Section 3 illustrates a product line
that is not a product family. It cannot be studied as a domain, so building process support is not an
appropriate strategy for manufacturing home construction tools.

Note that the organization does not actually build products when it builds the product family. It builds
the capability to build any product in the product line. To understand this, consider an automobile
manufacturing company-indeed, even a single model within a company. Even a single model has
many variations, such as its color and the factory installed options. The company does not want a sepa-
rate production procedure for each possible variation, though. Imagine how much more automobiles
would cost if red and blue cars had to be made completely separately. Therefore, the company builds
an assembly line capable of incorporating such minor variations. This assembly line is the product fam-
ily. The company uses the product family (assembly line) to build products (automobiles). In this way
it performs its business more effectively, making itself adaptable to a wider market.

By doing domain engineering, a company commits itself to activities in a well-defined area. This is the
relevance of Webster's second definition of domain. That definition is still not wholly accurate, since
it does not imply similarities, but it is conceptually significant.

In summary, defining a domain through domain engineering shows an organization how to satisfy a
variety of customers in a market. That market also helps the organization understand why and how
the domain will evolve in the future. And domains do evolve, just as individual programs evolve. Slide
1-4 shows Operation and Maintenance as part of the big picture of software development. It omits the
simple fact that, by the time software is finally retired, the money spent on maintenance has dwarfed
that spent during the initial development. Most software development occurs during maintenance.

28

4. More on MWgapogramming

Evolution of products has many causes. The most obvious is that companies want initial development
to be as quick as possible, whereas they hope their product will be salable for a long period-all of
which is termed "maintenance." Whatever the cause, it follows that software developers must be able
to modify software: to redefine the problems and solutions in the domain. People redefine problems
by understanding the market, predicting changes in it, and defining how products should evolve in
response to those changes.

4.2 DEFINITION OF MEGAPROGRAMMING

Now that domains have been explained, it is time to present a definition of megaprogramming. This
section will give a better feeling for what megaprogramming is and how it affects an organization.

4.2.1 A MEGAPROGRAMMING SCENARIO

Consider URW again. Section 2.1 presented contractual and commercial software development
scenarios for URW. The practices in these scenarios are typical of how many companies develop
software today. Section 2.2 discussed reasons why URW's practices might cause difficulties. Suppose
URW adopts megaprogramming. What will it do differently?

Many of URW's problems stem from the independence among its projects. The two projects in
Section 2.1 operated as if they were parts of different companies. They did not share information-at
least, not in any formal, documented manner that could be presented in the scenarios. This is despite
the many similarities that probably exist between the two projects. The robots may be different, but
they are part of the same domain. So URW decides that its product line is a product family and opts
to build process support to help it manufacture robots more efficiently.

To achieve this, URW must reorganize itself into something resembling Slide 4-12. URW will create
a separate domain engineering group. This group is responsible for creating, monitoring, and improv-
ing the process support. Each time URW receives an order for a robot, it will start an application engi-
neering project, as before. The difference is that the application engineering project will use the
process support. Using it entails following a special, domain-specific application engineering process
like that in Slide 3-6, not a general one like in Figure 2.

The course laboratory illustrates application engineering when following such a process, so it won't
be discussed here. The important point is that it's a process tailored to the domain. Application engi-
neers develop software mainly by thinking about problems in the domain. They think about such prob-
lems in any software development process-in Section 2.1, they developed a software requirements
specification, which amounts to the same thing. However, the application engineers using process sup-
port don't develop the complete requirements specification. They only describe how the family mem-
ber they want to build differs from other family members. This is a small part of the whole
specification, so URW saves time and effort. Furthermore, the application engineers' difficult work
ends once they have described the problem. The rest of software development is mechanical, derived
entirely from the problem statement.

This strategy works, as the notes for Slide 3-3 mention, because application engineers are experts in
the domain. They possess an intuitive understanding of the properties common to all family members.
They understand, or are able to determine, the implications of a variation among family members.
For this reason, Unit 3 tries hard to make students semiexperts in the robot domain prior to their
laboratory experience.

29

4. Mreio Meppwoav ning

It's worth noting that, in reality, URW's application engineers could not generate complete, working
software automatically based on their problem statement. The process support is only as good as
URW's domain engineers' predictive abilities. Customers will almost certainly demand variations
URW had not anticipated. Toshiba, a Japanese company that builds power plants, instituted a form
of megaprog-,amming and found they could generate about 70% of their software automatically. Since
each power plant required over one million lines of code, they reaped incredible savings-but they
still had to develop 300,000 lines of code for each new project. URW's engineers would face similar
situations. To keep the introduction to megaprogramming simple, the course's laboratory glosses over
this point and generates 100% of the software for the students.

Application engineers follow a domain-specific process. Domain engineers do not. They use a
software development process quite different from either the application engineering process or the
one in Figure 2. The objective of this process is to create, field, and enhance a product line-what the
slides term process support. Figure 7 shows this process; the text following Figure 7 explains it, activity
by activity.

"Domain Management. URW begins domain engineering by starting with the Domain
Management activity. Here, URW decides what process support it wants to build. This is a
critical business decision. It determines what markets URW will try to capture. The result of
this decision, expressed as the domain plan, determines URW's business direction for the next
several years. The domain plan guides domain engineers in all their other activities (hence the
nested boxes).

" DomainAnalysis. URW begins the Domain Analysis activity after making the decision on what
process support to build. The goal of Domain Analysis is to produce a specification of the pro-
duction line. URW will task a group of experts in the domain of robots (domain engineers) to
study the problems that robots must solve and to uncover the similarities and differences
among these problems. The domain engineers will use this information toward two ends:

- To describe the application engineering process.

- lb specify the properties of a solution to any of the problems in the domain. That is,
they have described a family of problems. They describe a family of solutions, one solu-
tion per problem, and describe the relationship between the two families. Thus, if an
application engineer describes a problem, the domain engineer has provided a means
to identify a solution.

" Domain Dfinition. Domain engineers produce the specification in two steps. During the first,
the Domain Definition activity, they produce an informal description of the domain.

" Domain Spec$fiatin. Domain engineers use the domain definition during the Domain
Specification activity, when they produce the more rigorous domain specification. The domain
definition is deliberately short on details; the domain specification is sufficiently precise to
serve as a requirements specification. The domain definition is small and focuses on concepts;
the domain specification is much larger and lets a domain engineer answer any question about
the problems and solutions in the domain. This paradigm of refining an informal description
is a common engineering design strategy.

This has briefly described the process domain engineers follow to create the products shown in
Slides 4-3 through 4-10. Note that the domain engineers have not created any software at this point.

30

4 More ,n Megaprogjamming

They have only described problems that software they create must solve, and have described the
architecture of proposed solutions.

Domain Knowledge

Business Objectives ________

Domain Analysis
Bu aine, Domainve

Management Definition

Domain
Domain efinition

Plan

Domain
Specification

Domain Domain
Specificat ioon b Implementation

Project
Support

LegendJ

(E D to Appficodion Engineefing
Figure 7. The Domain Engineering Process

9 Domain Implernentiaion. With the domain specification in hand, domain ei ;ineers begin the
Domain Implementation activity. Here, they build the process support tha i application engi-
neers will use. This involves building the product family, defining the .,pp'ication engineering
process, and developing the software to assist in process support. In more detail:

The product family consists of reusable software components. These are based on the
architecture developed during domain analysis. The domain engineers will implement
a software component for each box in the architecture (see Slide 4-6). Note that the
architecture itself is not part of the software, any more than a building's architecture
is part of a building.

31

4. More on Mepprogrammin

- The application engineering process describes the process for specifying requirements
(precisely stating the problem, see Slide 4-5) and thegeneration procedures (see Slide
4-11). Generation procedures are an exact description of the relationship between a
problem and its solution. Application engineers, once they have stated a problem, will
use the generation procedures to produce the software.

Developing the software that automates the process support is a miniature software
development process in its own right. URW tries to determine which activities of the
application engineering process are most likely to introduce errors. It then studies
those activities and, where practical, automates them. In the laboratory, adapting the
reusable software components to satisfy a particular problem statement is one of the
most difficult tasks for humans to perform. It is not a complex task, just a tedious
one--describing how to do it manually would sometimes require hundreds of
instructions. It has therefore been automated.

" Domain Verification. Domain engineers then determine whether the process support satisfies
the domain specification. This is analogous to testing in a conventional project, but domain
engineers must see if each problem in the domain has a correct solution, rather than checking
a single solution against a single problem.

" Project Support. In addition to these activities, the domain engineering group acts as a support
organization with respect to application engineering projects. Domain engineers are responsi-
ble for setting up the production line and helping application engineers use it. They are also
responsible for noting, and correcting, deficiencies in the process support.

The result of all this is that URW has launched a set of concurrent iterative processes. Domain
engineering is not a simple progression of steps, as in Figure 2. The results of domain engineering feed
back into the initial activities of domain engineering as domain engineers evolve the domain. Thus,
each domain engineering iteration results in improved process support. URW can better position
itself for future sales as a result of this effort. At the same time, an application engineering project
responds to its changing customer needs-whether that of an individual customer or of an entire
marketplace-by refining its problem statement and building new, improved versions of a product.
Each application engineering iteration results in a new product.

4.2.2 WHAT Is MEGAPROGRAmmiNG?

URW has used megaprogramming to develop products. That is, it has achieved a capability to sell a
variety of products in a changing marketplace by doing the following:

"* Appealing to awide customer market by thinking in terms of a product line rather than a single
product

"• Realizing that there are many similarities among its products and taking the time to study
these similarities

"* Exploiting these similarities by implementing process support

When a company takes these three actions, it is practicing a megaprogramming approach to software
development.

32

4. More an Mcgapropammimg

There are four key concepts in megaprogramming:

" Product Famies. A family is a set of things that are sufficiently similar that it is worthwhile to
understand the common properties of the things before considering special properties of spe-
cific instances. Domain engineers think in terms of product families, rather than in terms of
individual products. By doing so, they anticipate a range of needs. This helps a company like
URW plan for the future as well as the present. It has helped companies like Microsoft Corpo-
ration make such products as Word and Excel work on a range of computers. (That is, there
are several versions of Word, each of which onerates on a different platform. Each version is
a product. The set of all versions is a F It's also important to someone develop-
ing software for their personal computc, i ive to understand the nature of the problem
at hand.

"Iterative Processes. Any organization, software or otherwise, should expect to use iterative
processes. Experience is the best teacher, says the old saw, and has proven the only reliable
way to diagnose trouble spots in a production capability. (Henry Ford first had lines of workers
moving between stationary cars, rather than cars moving between stationary workers.) Quality
software is inevitably produced only through successive iterations of specification, design, and
implementation activities. The company or individual that uses an iterative process recognizes
the difficulty of writing the requirements for a useful product without having built and used
it, or of keeping up with ever-changing technology. Companies that write operating systems
understand this need very well. As of this writing, Microsoft Corporation has produced six
versions of DOS, Apple Computer seven versions of its Macintosh operating system.

" Specfleation. A specification is a precise description of the properties needed of some entity,
such as a program. Of particular interest are specifications of requirements. If the require-
ments specification really is precise-not an informal description in English, but something
akin to the set of decisions in the laboratory-then it can be used as the input to a generation
procedure, from which software can be generated automatically.

" Reuse. Constructing software from existing components reduces effort and increases
reliability, two of the great software engineering problems. This seemingly simple panacea is
made complex by the difficulty in integrating components drawn from arbitrary sources.
Domain engineering, and the standardization that results from it, greatly increases the ability
to reuse existing software components.

Megaprogramming stresses engineering concepts. Much of its power comes through instituting
standards-as Section 3 mentioned, other disciplines are far ahead of software engineering in doing
so. The analysis of similarities during domain engineering is, in effect, specifying standards for the
domain: standard requirements (what is common to all problems in the domain), standard designs
(the architecture in Unit 4 shows what is standard to all designs in the domain), and standard
implementations (components shared among all robots establish standard algorithms).

4.2.3 PERSPEMrVES ON MEGAPROGRAMMING

The original ARPA definition of megaprogramming stresses the product-line approach to software
development. The description in this section is but one way to achieve a product line. It is based on
a software engineering approached called Synthesis, developed by the Consortium. Synthesis has been

33

4. More on Megaprogramming

used successfully on several industrial projects. More information is available in the Reuse-Driven
Software Processes Guidebook (Software Productivity Consortium 1993).

Other researchers have taken a different approach to megaprogramming. Space limitations preclude
discussing them here (see STARS [1992]).

4.3 BENEFITS OF PRACTICING MEGAPROGRAMMING

Section 2.2 described five significant software development problems. Megaprogramming will not
always solve the problems, but practicing it can significantly alleviate many or all of them. This section
explains how megaprogramming helps organizations overcome each problem.

Expressing software requirements. Application engineers practicing megaprogramming have
two advantages. First, because they describe a problem in terms of how it differs from other
problems in its domain (see the laboratory), they reuse requirements instead of having to write
them from scratch. They have fewer choices to make and, thus, are less likely to make an incor-
rect choice. Second, the requirements they create are precise enough to allow rapid prototyp-
ing (this is essentially what goes on in the course laboratory: the students create and execute
a rapid prototype of the robot's control software). This means the application engineers can
show a model of the system to customers at the time the requirements are written, rather than
having to wait until after the system is implemented. Customers can immediately point out
deficiencies and misunderstandings. Consider Slide 1-6: fixing a requirements error during
testing costs four times as much as fixing it during requirements. Practicing megaprogramming
helps application engineers find errors during requirements.

0 Following a software development process. Much of this difficulty stems from the generality of
the waterfall software development process so widely used today. This process gives only gen-
eral guidance and does not direct the day-to-day activities. The reason it is so general is that
adding more detail requires making assumptions about the type of software being devel-
oped-in other words, about the domain. Domain engineers are tasked to add exactly this in-
formation to the process they create for application engineers. Application engineers,
therefore, have a very detailed process to follow.

* Keeping requirements and documentation up to date. This problem often arises not so much from
bad intentions as from neglect: no one is explicitly tasked to do the job. An organization that
practices megaprogramrr fag explicitly recognizes the need to keep requirements and docu-
mentation consistent with code. Domain engineers are responsible for developing and main-
taining standards for the domain. This includes documenting the standards and keeping them
up to date.

* Grasping software design. Megaprogramming helps here by placing the design in a
domain-specific context. Often, understanding a design is simply a matter of evolving a
standard, common terminology and set of descriptive techniques. These tend to be a natural
by-product of multiple iterations of domain analysis.

* Resin change. Much of the strategy in domain engineering involves planning for change,
attempting to anticipate and soften its effects. Of course, industry must be prepared to adopt
megaprogramming, which is in itself a major change. However, organizations that have tried
and stuck with it report improved productivity (O'Connor et al. 1994).

34

5. THE NEED FOR MEGAPROGRAMMING IN
HIGH SCHOOLS AND UNIVERSITIES

The previous sections have shown megaprogramming's potential importance as an industrial software
development approach. Industrial practices are not necessarily suited to classroom settings, however.
Many megaprogramming details are relevant to a large corporation but not in a classroom. These de-
tails arise because corporations engage in huge multiyear projects, which are simply not practical for
students.

Nevertheless, the Megaprogramming Curriculum Project believes teachers should introduce
megaprogramming into their courses. This section will explain why.

5.1 THE CURRENT CURRICULUM: STRENGTHS AND WEAKNESSES

Section 1.1 discussed the current computer science curriculum briefly. Understanding
megaprogramming's importance in academia requires a more thorough analysis.

The discussion that follows concentrates on the first computing course. This course's content sets the
stage for students' remaining education in computing and therefore plays a fundamental r6le. Subse-
quent courses-data structures, operating systems, etc.-build on its content. Changing it necessitates
changing the rest of the curriculum. It therefore deserves special study.

A survey of model curricula (Larson and Stehlik 1990; Tlicker et al. 1991; Merritt et al. 1993) shows
that the first course emphasizes the following topics:

"* Programming Language Notation. lb write a program, a student must master the nuances of a
programming language's syntax and must feel comfortable expressing algorithms using that
syntax.

" Algorithms. A student learns sequencing, conditional execution, and iteration very early in the
course-sometimes within the first two weeks, if teachers are using a special language such
as Karel the Robot. A student spends much of her or his first year learning specific algorithms
to be used in conjunction with recently introduced language features. For example, many
teachers introduce sorting algorithms almost as soon as they introduce arrays.

"• Data Structures. A student learns about arrays, records, pointers (less frequently), and how to
use them to create certain simple abstract structures, such as trees or stacks.

"* Programming Methodoly. A student learns approaches to software specification, design, and
verification. The coverage of specification is necessarily brief because students lack the
mathematical background necessary to grasp most specification techniques. The emphasis

35

U -

5. The Need fr" Megaprogramming in High Schools and Univerities

during design is on top-down decomposition methods, such as structured programming and
information hiding. During verification, students learn testing techniques and an informal
version of axiomatic verification.

This emphasis on programming methodology does not extend to teaching software process
concepts, despite the obvious overlap. Several of the model curricula present software design
concepts, but none expect students to separate design from implementation.

These topics, as Section 1.1 mentioned, have formed the basis of the introductory computing course
almost from the very beginning. To be sure, the course's content has not been static. Context-free
grammars let teachers explain syntax quickly and precisely. Algorithms were once presented as
flowcharts (the effect of which was mainly to make students grasp a second notation); now teachers
use structured programming concepts. Programming methodology is now understood much better:
teachers can show how stepwise refinement leads from requirements to a workable design.

The Megaprogramming Curriculum Project believes these topics are still valid-writing software
requires mastering a formal notation and using it to express algorithms. However, the project
questions the emphasis placed on them, as opposed to certain other topics, and the manner in which
they are introduced.

Paradoxically, the reasons why stem in part from the course's strength: students who take it are able
to write simple programs in an arbitrary application area. This is an excellent model for a high school
or university. Instructors in areas like chemistry, physics, or civil engineering-not to mention com-
puter science-can assign their students computationally intensive problems after the students have
had only a single course in computing. Indeed, the student who knows sequencing, conditional execu-
tion, and iteration can construct an algorithm to solve any solvable problem-a well-known theoreti-
cal result in computer science (B6hm and Jacopini 1966). Few other disciplines offer such a general
and powerful introductory course!

This generality comes at a pricm. Students completing the first course have the following perspective:

" They place too much emphasis on the programming anguage OWy have Learned. This is a natural
consequence G: their struggle to learn a new notation. A language like Pascal has a complex,
unforgiving syntax. One of their first major problems is learning that syntax, so they attach im-
portance to the language syntax rather than the semantics-that is, the ease of expressing algo-
rithms in it. D, contrast, the skilled software developer can learn the syntax of any
programming language in a day or two.

" They think of a program as an algorithm. Experienced software developers, however, realize
that a program consists of a set of modules. They use modules as the basis for contemplating
and expressing software design; designs of programs based on algorithms have not proven sat-
isfactory. Because engineering is not possible without a design, software development without
a design will never be a disciplined activity.

" They think of software development as conssting of codig and testing. This paper has discussed
the steps of real software development in depth and has shown them to be far more complex
than just these two steps. Experienced software developers see coding as a largely rote activity
that follows design. Furthermore, perceiving the cyclic nature of software development,
developers recognize maintenance and the problems it causes and try to plan for it.

5. TM Need for Metgapropnu" in High Seboo and Umvtns

They lacka sciewific basis to analyzethe software tiy produce. Most high schools and universities
teach a course called "Introduction to Computer Science," but they teach little or no science
during the course. Roughly speaking, computer science enables someone to assess the quality
of a computer program. Here, quality can be defined in terms of many factors: execution
speed, memory use, user interface friendliness, reusability, and degree of fidelity to the re-
quirements, to name a few measures. Most introductory courses only teach students to test
their software, and not in any systematic way. Other issues are ignored. Most students never
practice a disciplined, scientific approach to software development. Experienced software de-
velopers try to be as disciplined as they can, scientifically analyzing their software design (not
implementation,.

This discussion should not be taken to mean that the current content of introductory courses is easy.
Formal syntax concepts and algorithmic problem-solving are difficult skills and require time to mas-
ter. The difficulty is making sure that students do not see these as the only obstacles to writing soft-
ware, or even the main obstacles. People with this perspective grasp only a small part of what software
development is all about and require extensive retraining to be successful in the work force.

Even given these problems, it's worth questioning whether to make any changes to a curriculum that
does a generally good job of serving the community. The Megaprogramming Curriculum Project be-
lieves that the current model has its place, but mainly for a service course. Those students who intend
to become professional software developers (or even computer science researchers) would benefit
from a curriculum that teaches more about how software is actually developed.

5.2 BENEFITS OF MEGAPROGRAMMING FOR STUDENTS

The Megaprogramming Curriculum Project believes students will benefit from learning
megaprogramming in four ways:

They will learn to see software development as an exercise in science and engineering. This
paper has shown how megaprogramming fosters a disciplined approach to software develop-
ment. Students who learn megaprogrammingwill be able to produce better software-and will
be able to back up claims of quality.

They will be able to wot k cm more complex systems. Megaprogramming encourages reuse, so
students can reuse existing software that performs complex functions. The laboratory in the
Overview of Megaprwrammig Course demonstrates this point. Students create reasonably
complex robot control software by reusing existing software components. Examples of this na-
ture are more exciting than typical student projects; as a result, students' motivation will be
increased.

* They will learn more about what software development is really like. This makes them better
prepared for their careers.

Their perspective toward software development will be holistic. Megaprogramming
encompasses all aspects of software development. The instructor can introduce any
software-related topics, and can tie them together. Most schools teach at least some software
engineering topics. (e.g., programming methodology, as discussed in Section 5.1) but, lacking
a complete approach such as megaprogramming, do not let students understand the full
importance of the topics.

37

5. The Need for Mepaprorammin& in High Sehool and Universits

5.3 WHY IN THE FIRST COURSE?

Many undergraduate institutions teach megaprogramming concepts. Students often take a software
engineering course in their third or fourth year and learn about software processes, software architec-
ture, etc. The Megaprogramming Curriculum Project believes that these concepts should be
introduced in the first course, even in high schools. Is this really the correct place for them?

A survey of recent conferences in software engineering education (e.g., Diaz-Herrera 1994) shows a
trend toward teaching software engineering concepts earlier. Educators complain that, in the current
curriculum, students' early education appears to stress the wrong skills. Their abstraction abilities-so
crucial to expressing and communicating specification and design concepts-are poorly developed.
Their software development techniques are not suited to real projects. As a result, one of the software
engineering course's major goals is to make students forget the improper skills they have acquired.

Some secondary considerations support introducing megaprogramming early. Interest in computer
science as a major dropped considerably during the past decade (Gries and Marsh 1989). One solution
to this is to provide students with more interesting problems. As discussed in Section 5.2,
megaprogramming increases the size and complexity of the software students can be expected to
create.

The Megaprogramming Curriculum Project may also been seen as an experiment in finding the
correct amount of theory to introduce in the first course. Computer science educators have always
been interested in this. The University of Maryland is a noteworthy example (Mills et al. 1989). Their
first course introduces students to the more mathematically oriented aspects of computer science and
software engineering, such as axiomatic program definition and formal program verification.

The Megaprogramming Curriculum Project is striking a balance between this extreme and the
mainstream approach. In megaprogramming, the science comes more from the application domain
than from the pure mathematics associated with computer science. The student therefore learns to
see rigorous, quantitative analysis as a natural part of software development. However, the student
needs no special mathematical background.

5.4 BENEFITS OF TEACHING THE OVERVIEW OF MEGAPROGRAMMING COURSE

Now that the benefits to the students have been explained, it remains to discuss what the instructor
may expect from teaching the Overview of Megaprogramming Course. This course, as the name implies,
is not a complete course in megaprogramming. After taking the course, the student:

"* Is an application engineer, for the domain of robot control software

"• Has an appreciation of the important issues in industrial software development

"* Has learned the concepts of megaprogramming, a new and exciting approach to developing
software

These concepts include application engineering and domain engineering. The course teaches the
student how to perform application engineering in a particular domain. It deliberately omits any
discussion of how to perform domain engineering. This complex topic is beyond the scope of an
overview course. (The Megaprogramming Curriculum Project hopes to create, or encourage

38

5. Th Need for MegaprogamminS in High Schook and Universit

instructors to develop, subsequent course units that will teach students how to perform domain
engineering.)

Despite the course's brevity, the instructor who teaches the course should find that her or his students
have a more realistic understanding of the role software plays in complex systems and of the
difficulties in developing it. By using a hypothetical company, and by providing considerable detail on
that company, the course tries to show all of the major considerations that influence software. Often,
these considerations are not technical but, as the laboratory shows, economic. Nor do they always have
obvious, clearly defined answers. Software practitioners must be able to justify their decisions. The
Overview of Megaprogramming Course provides exercises to help them realize this.

The Megaprogramming Curriculum Project also hopes that teaching the course will help instructors
become more aware of the states of the art and practice in industry. The course, including this
document, serves as a sort of liaison between industry and academia.

Teachers who have taught the course have reacted positively toward it. Some have begun to
incorporate its concepts into their regular materials. The Megaprogramming Curriculum Project is
pleased by this initiative, for it shows that the teachers consider the material valuable and a
fundamental part of a student's education. The project hopes that, through actions such as this,
megaprogramming materials will continue to influence the computing curriculum.

39

S. The Need for Mcgaprogramming in High Schools and Uniersities

This page intentionally left blank

40

APPENDIX A. RELATION OF LECTURE SLIDES
TO THIS REPORT

This report makes many references to slides from the lectures. Someone preparing to lecture on this
material may appreciate inverse references: which sections of this report explain the material of a
given slide. Table 1 presents that information.

Table 1. Mapping of Slides to Sections in This Report

Slide Section(s) in Report Slide Section(s) in Report

1-2 2.1 3-5 4.1, 4.2.1

1-3 2.1, 2.2, 2.3 3-6 2.2

1-4 2.1 3-7 4.2.1,4.2.2

1-5 2.1 4-2 4.2

1-6 2.2 4-3 4.1, 4.2.1

1-7 2.1 4-4 4.1,4.2.1

1-8 4.2 4-5 4.2.1, 4.2.2

2-2 4.1 4-6 4.2.1,4.2.2

2-3 4.1 4-7 4.2.1,4.2.2

2-4 2.3.1,4.1 4-8 4.2.1, 4.2.2

2-5 3,4.2 4-9 4.2.1,4.2.2

2-6 4.1, 4.2, 4.3 4-10 4.2.1,4.2.2

3-2 2.1,4.2.1 4-11 4.2.1,4.2.2

3-3 4.1,4.2.1 4-12 4.2.2

3-4 4.1,4.2.1

41

Appendix A. Relation of Leture Slides to Thi Rcpt

This page intentionally left blank

42

A

APPENDIX B. STRUCTURE OF THE OVERVIEW OF
MEGAPROGRAMMING COURSE

The Overview of Megaprogramming Course is organized into four units and takes approximately 1 to
2 weeks to cover. This appendix briefly describes each unit.

B.I UNIT 1: SOFTWARE DEVELOPMENT

The first unit discusses how today's companies develop software. It shows data that justifies the points
it makes about what software development is really like. It covers important software development
concepts, mainly process and requirements.

This unit uses the concepts of process and requirements to motivate the need for reuse and
megaprogramming. A simple chart of the megaprogramming process helps students to put the rest
of the course in the proper context. An in-class exercise asks the students to try writing complete re-
quirements for simple, everyday problems, thereby showing them how difficult the requirements step
is. This unit introduces the vending machine example, which will be used throughout the course. For
their homework assignment, the students devise a set of requirements for the vending machine.

B.2 UNIT 2: CONCEPTS OF MEGAPROGRAMMING

Unit 1 covered general software development concepts. This unit introduces concepts specific to
megaprogramming.

It presents software development as a process of analyzing a problem and implementing a solution.
It then defines domains, shows how domains support reuse, and discusses domain engineering and
application engineering. In-class exercises for this unit have the students identify whether or not
simple, everyday classes of1 applications are domains. For the vending machine problem, the students
combine their requirements, identify similarities and differences among their different vending
machines, and identify those components that can work for all vending machines. For homework,
students identify what components they need for their own vending machine.

B.3 UNIT 3: APPLICATION ENGINEERING

This unit shows students what software development is like when using megaprogramming. The unit
introduces problems associated with robot control software. Students learn how megaprogramming
helps them produce such software.

At the end of this unit, the students are given a laboratory exercise. They must carry out application
engineering in the robot control software domain. They are taught about URW, the hypothetical

43

Appendix B. Structlu of the aOiw of Mtapro&rwnmirg C~W

company from Section 2. The students build the software for three customers: a farmer who needs
corn harvested, a representative from the Alaska National Guard who wants search-and-rescue
robots, and a National Park Service ranger who wants robots that can pick up litter. The application
engineering process the students follow shows them the commonalities among the software
requirements for these seemingly disparate robots-although it also calls their attention to the
specific differences. The software solutions they generate are constructed purely from reusable
components. They integrate these components according to a domain-specific software architecture
and can, therefore, see the similarities and differences among implementations as well. Robots in this
domain are all similar in that they search autonomously for some type of object. However, they differ
based on such characteristics as the terrain they search (field, tundra, or forest), the types of objects
for which they search (corn, people, or litter), the actions they take on finding an object (pick up and
return, locate only, continue indefinitely), their search strategy (zigzag or sweep), and their initial
amount of energy (in joules). The application engineering process asks the students to reason about
robots in terms of these concepts. Students must also make quantitative comparisons of robots based
on a cost model that is provided and an execution environment that simulates the time and energy
needed to perform a mission. Students vary certain quantities and see the relative effects on a robot's
cost and the time needed to complete a mission.

The laboratory exercise is built on top of the Karel-the-Robot concepts developed by Pattis (1981).
Afront end to an existing Karel implementation asks the students to make decisions that differentiate
one robot from other robots within the domain as described in the previous paragraphs. Based on the
decisions, the students then use the environment to generate robot software from the reusable
components within the domain and to simulate the robot moving through the specified terrain
performing the specified mission.

B.4 UNIT 4: DOMAIN ENGINEERING

This unit discusses what a company must do to achieve the software development capability the
students saw in Unit 3, defining this as domain engineering. Because of time constraints, the unit
covers what but not how.

The unit covers the information domain engineers use to define a domain and aspects of the support
domain engineers provide for the application engineer. The exercise for this unit helps the students
see how they can use megaprogramming in the development of vending machines. An examination
evaluates their mastery of the material.

44

LIST OF ABBREVIATIONS AND ACRONYMS

ARPA Advance .esearch Projects Agency

NASA National Aeronautics and Space Adm;iistration

URW United Robot Workers, Inc.

45

List of Abbreviations and Acronyms

This page intentionally left blank

46

REFERENCES

Backus, John The History of FORTRAN I, II, and III. SIGPLAN Notices 13,
1978 8:165-180.

Boehm, Barry Software Engineering Economics. Englewood Cliffs, New Jersey:
1981 Prentice-Hall.

Boehm, Barry, Terence Gray, Prototyping vs. Specifying: A Multi-Project Experiment. IEEE
and Thomas Seewaldt Transactions on Software Engineering SE-10, 3:290-302.
1984

Boehm, Barry, and "Megaprogramming." In Proceedings, DARPA Software
William Scherlis Technology Conference. Los Angeles, California.
1992

BOhm, Corrado, and Flow Diagrams, Turing Machines and Languages with only Two
Guiseppe Jacopini Formation Rules. Communications of the ACM 9:366-371.
1966

Brooks, Frederick No Silver Bullet: Essence and Accidents of Software
1987 Engineering. IEEE Computer 20,4:10-19.

CACM A Debate on Teaching Computer Science. Communications of
1989 the ACM 32:1397-1414.

Coad, Peter, and Object-Oriented Analysis. Englewood Cliffs, New Jersey:
Edward Yourdon Prentice-Hall.
1990

Datamation NIH Syndrome Strikes Again. Datamation 40, 11:90.
1994

Department of Defense Military Standard: Defense System Software Development
1988 (DOD-STD-2167A). Washington, D.C.: Department of

Defense.

Dfaz-Herrera, Jorge Software Engineering Institute 7th Conference on Software
1994 Engineering Education. New York, New York: Springer-Verlag.

Emigh, Jacqueline Software Forum-Corporate Market to Reach $51B in '94.
1994 Newsbytes April 25, 1994.

47

I

Rctfcrnccs

Gries, David, and The 1987-1988 Taulbee Survey. CommunicafionsoftheACM32,
Dorothy Marsh 10:1217-1224.
1989

Hartmanis, Juris Computing the Future. Communications of the ACM 35,
1992 11:30-40.

Hayes, Philip, and P. Szekely Graceful Interaction through the Cousin Command Interface.
1983 International Journal of Man-Machine Studies 19, 3:285-305.

Humphrey, Watts Managing the Software Process. Reading, Massachusetts:
1989 Addison-Wesley.

Ince, Darrel Software Development: Fashioning the Baroque. New York, New
1988 York: Oxford University Press.

Kouchakdjian, Ara, "Evaluation of the Cleanroom Methodology in the Software
Scott Green, and Victor Basili Engineering Laboratory." In Proceedings of the Fourteenth
1989 Annual Software Engineering Workshop. Greenbelt, Maryland.

Larson, Barbara, and Teacher's Guide to Advanced Placement Courses in Computer
Mark Stehlik Science. New York, New York: Educational Testing Services.
1990

Marco, David, and SAD7T StructuredAnalysis and Design Technique. New York, New
Clement McGowan York: McGraw-Hill.
1987

McCracken, Daniel, and Life Cycle Concept Considered Harmful. Software Engineering
Michael Jackson Notes 7, 2:29-32.
1982

Mcllroy, Douglas "'Mass-Produced' Software Components." In Proceedings,
1968 NATO Software Engineering Workshop.

Merriam Webster's New Collegiate Dictionary. Springfield, Massachusetts:
1977 G.&C. Merriam Company.

Merritt, Susan, Charles Bruen, ACM Model High School Computer Science Curriculum.
Philip East, Communications of theACM 36, 5:87-90.
Darlene Grantham,
Charles Rice,
Viera Proulx, Gerry Segal,
and Carol Wolf
1993

Re(erences

Mills, Harlan, Victor Basili, Mathematical Principles for a First Course in Software
John Gannon, and Engineering. IEEE Transactions on Software Engineering SE-15,
Richard Hamlet 3:550-559.
1989

O'Connor, James, Reuse in Command-and-Control Systems. IEEE Software 11,
Grady Campbell, 5:70-79.
Catharine Mansour, and
Jerri Turner-Harris
1994

Paige, Emmett Jr. DoD Software Reuse Initiative. Report to Congress, March 1994.
1994 Washington, D.C.: Department of Defense.

Pattis, Richard Karel the Robot: A Gentle Introduction to the Art of Programming
1981 with Pascal New York, New York: John Wiley and Sons.

Prey, Jane, James Cohoon, and "Software Engineering Beginning in the First Computer Science
Greg Fife Course." In Proceedings, Software Engineering Institute 7th
1994 Conference on Software Engineering Education. New York, New

York: Springer-Verlag (359-374).

Royce, W "Managing the Development of Large Software Systems:
1970 Concepts and Techniques." In Proceedings, WESCON

Scheifler, Robert and The X Window System. ACM Transactions on Graphics 5,
Jim Gettys 2:79-109.
1986

Software Productivity Reuse-Driven Software Processes Guidebook. SPC-92019-CMC,
Consortium version 02.00.03. Herndon, Virginia: Software Productivity
1993 Consortium.

STARS On the Road to Megaprogramming. Arlington, Virginia: STARS
1992 Technology Center.

Tucker, Allen, Bruce Barnes, Computing Curricula 1991: Report of the ACM-IEEE-CS Joint
Robert Aiken, Keith Barker, Curriculum Task Force. New York, New York: ACM Press.
Kim Bruce, Thomas Cain,
Susan Condry, Gerald Engle,
Richard Epstein, Doris Lidtke,
Michael Mulder, Jean Rogers,
Eugene Spafford, and
Joe Turner
1991

49

References

Wartik, Steven, and FILLIN: A Reusable Tool for Form-Oriented Software. IEEE
Maria Penedo Software 3, 2:61-69.
1986

Weinberg, Gerald The Psychology of ComputerProgramming. New York, New York:
1971 Van Nostrand Reinhold.

so

